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Executive Summary

This deliverable reports on results obtained in the course of Task 3.4 and presents a system de-
sign analysis of candidate algorithms for positioning, reciprocity calibration in distributed multiple-
input multiple-output (MIMO) systems, and environment sensing. As a step towards the data
fusion of multiple Contact Service Points (CSPs) we modify a graph-based channel tracking
algorithm tracking. For means of system performance analysis we investigate the achievable
positioning performance in terms of the Cramér-Rao lower bound (CRLB).

The results presented in this deliverable serve the goal of investigating the performance of se-
lected algorithms that will be applicable to specific use case scenarios. The algorithms are strong
candidates for deployment and implementation in the final stage of the project. The analysis in
terms of the CRLB allows to find tuning points in the system design and for deployment of ac-
tual systems in realistic environments, allowing to quantify achievable performance metrics such
as positioning accuracy, or for the development of optimum CSP placement strategies for target
scenarios. With position-information serving as an important input to various applications, we
analyze the performance of algorithms that improve the overall system robustness for commu-
nication and positioning, being able to deal with calibration and synchronization offsets that are
likely to occur in deployed systems. Environment learning is shown to support the robustness as-
pect by estimation of environment information that can be collected and fed back into the system
to overcome difficult channel conditions, such as non-line-of-sight (NLOS), or to allow exploiting
the full propagation channel in parametric position-based transmissions.

The performance characterization based on simulations of each of the employed algorithms
shows the feasibility of the application in realistic scenarios. The algorithms of interest are seen
as capable of working with systems of varying topology or size (in terms of user equipment (UE)
devices as well as CSPs), while also allowing the flexibility to adapt to environment changes from
the time of deployment onward during operation. This is seen as a key ingredient to keep the sys-
tem performance of the RadioWeaves (RW) infrastructure at a high level and enable to ultimately
meet target requirements set in previous deliverables.
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Chapter 1

Introduction and Overview

RadioWeaves (RW) infrastructure is characterized by the extremely large system aperture and a
wide distribution in the environment. While a large aperture is in general highly sought after in
positioning applications, the wide distribution is an additional positive factor, allowing to expect
high performance in idealized conditions. On the downside, while the maximum system band-
width in RW is limited [1], one can expect a higher computational complexity due to the massive
amount of data, i.e., in the context of this deliverable being the received and sampled transmit
signals or the estimated channel state information (CSI), that are passed to the dedicated, task
specific algorithms. To this end, apart from the investigation of algorithms working on an optimum
system, it will also be of interest to investigate algorithmic ”trade-offs”. For example, position
information is contained in specular multipath components (MPCs), which can be estimated with
high accuracy by super-resolution algorithms, but it may be computationally prohibitive to apply
these algorithms to the data of the full system aperture. A subarray approach, as already used in
D1.2 [2], can be seen as a well-suited trade-off, to overcome both of these problems: it allows to
balance estimation accuracy with computational and system design complexity. The results from
D1.2 [2] have shown that, over the full aperture, the propagation conditions will be non-stationary,
which needs to be included correctly captured and treated by algorithms. Finally, another im-
portant factor from an algorithm perspective is any additional information that can be extracted
and passed on to different parts of the RW system, e.g., leveraging environment information for
wireless power transfer (WPT) [3] or for positioning [4]. This could be, for example, MPC visibility
regions along a Contact Service Point (CSP), but also the estimated MPC signal-to-noise ratio
(SNR) values to quantify the link reliability in different regions of the environment.

The RW system [5, 1] consists of widely distributed base stations, termed CSPs, which enable
signal exchange with the user equipment (UE) devices in the system. These UE devices can
belong to the different classes introduced in D1.1 [5], e.g., energy neutral device (END) (Class
1) or devices with sufficient power storage to perform active tasks (Class 5). From a positioning
perspective, a CSP is termed an anchor and is used to perform positioning in a global frame of
reference, while a UE is a device to localize and commonly termed the agent.

In this deliverable, we discuss algorithmic approaches to enable positioning, synchronization, and
calibration by means of the distributed RW infrastructure in realistic environments. In addition to
these, it also investigates possible approaches for learning or estimation of site-specific properties
that might even change after deployment, e.g., due to large moving objects. The algorithmic
approaches are designed to be highly flexible and adapted to the specifications from WP1 and
capable of exploiting the architectures developed in WP2. While the algorithms are described
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and evaluated in the following chapters, it is important to note that the following project phase(s)
dealing with the experimental validation and proof-of-concept can require adaption of specific
aspects of algorithms, or motivate algorithmic extensions. We include a condensed version of the
system model from D1.2 [2] to allow for intuitive relation to the previous analysis.

This deliverable is closely linked to the work performed in Task 3.4, while exploiting the system
design given in previous deliverables, e.g., D2.1 [1] introducing the terminology and federations,
as well as the results for the channel model for RW from D1.2 [2]. The structure of this deliverable
is as follows: Chapter 2 revisits the system model and introduces the used notations. Chapter 3
describes the system performance analysis in terms of the Cramér-Rao lower bound (CRLB) as
a fundamental performance bound for positioning in different synchronization states. Chapter 4
presents the investigated algorithms for positioning, calibration, and CSP data-fusion. Chapter 5
contains an algorithm for radar-based multiple-input multiple-output (MIMO) sensing. Chapter 6
summarizes and connects the results from the previous chapters and gives an outlook on future
work.
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Chapter 2

System Model

This chapter is a brief recap of the model outlined in D1.2 [2]. It generalizes the system description
to fit the specific topics that are dealt with. This will encompass adapting it to allow intuitive
computation and derivation of performance bounds and algorithms for positioning and parameter
estimation, while also highlighting the connection regarding different forms of calibration and
synchronization.

2.1 Multipath-based Model

A RW infrastructure consist of multiple CSPs representing access points with the propagation
medium, located at positions a(j) = [a

(j)
x , a

(j)
y , a

(j)
z ]T forj = {1, . . . , J}, each equipped antenna

arrays consisting of M (j) array elements in arbitrary geometric configurations at positions a
(j)
m =

[a
(j)
x,m, a

(j)
y,m, a

(j)
z,m]T with m = {1, . . . ,M (j)}. While different array geometries are well investigated

[6, 7] the main point of interest is seen on the general scaling capabilities of RW, with different
spatial distributions of CSPs equipped with varying sizes of antenna arrays being of special inter-
est. An arbitrary number L of mobile device, representing UEs, ENDs or other, are distributed at
positions pl = [px,l, py,l, pz,l]

T in the system/environment and interact with the RW infrastructure.
This interaction between UEs and RW infrastructure is performed in uplink (UL) or downlink (DL),
giving received signals at either CSPs or the UEs. The following section describes the signal(s)
at a CSP and the corresponding array elements, at the example of UL transmission from L UEs.

2.1.1 Signal Model

The signal vector r(j)(f) = [r
(j)
1 (f), . . . , r

(j)
M (f)]T for all antenna element signals at a CSP j for a

baseband frequency f is given as

r(j)(f) =
K(j)∑
k=1

H
(j)
k (f)s̃(f) +w

(j)
s (f) +w(j)(f) (2.1)

= H(j)(f)s(f) + n(j)(f) (2.2)

with the noise term in n(j)(f) contains stochastic signal components attributable to scattering
or diffuse multipath component (DMC) and (complex) AWGN w(j) modeling receiver noise, and
s̃(f) = [s1(f), . . . , sM(f)]T being the transmit waveform at each array element.
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Figure 2.1: Overview of system scenario. (a) Environment floor plan including the most important
aspects and outlining multipath propagation encompassing DMC and SMCs. An exemplary mirror
source a

(1)
k=2 is shown. (b) Coordinate system and array definitions for a subarray at location a

(j)
k

with array elements a
(j)
k,m including an exemplary component direction of arrival (DOA) u(φ, ϑ)

and corresponding unit vectors in Cartesian and spherical coordinates.

The channel matrix entry from UE l to antenna m of the jth CSP defined as

[H
(j)
k (f)]m,l = α

(j)
k,m,lexp(jϕ

(j)
k,m,l)exp(−j2π(f + fc)τ

(j)
k,m,l) (2.3)

representing the propagation conditions experienced by the specular multipath component (SMC)
k ∈ {1, . . . , K(j)}, where K(j) is the number of MPCs per CSP. The SMC amplitude α

(j)
k,m,l

and phase ϕ
(j)
k,m,l as well as propagation delay τ

(j)
k,m,l define the medium effects of the signal

propagating between the UE at position pl and the CSP antenna (array element) at position
a
(j)
k,m with the former two describing path loss and phase shift [2], and the latter defined as the

propagation distance

cτ
(j)
k,m,l = ∥pl − a

(j)
k,m∥ (2.4)

where a
(j)
k,m is the location of a mirror source representing the kth SMC and with c being the speed

of light. The operator ∥ · ∥ denotes the vector norm.

For joint processing of different bandwidth signals, we stack all frequency samples of each ar-
ray element as r

(j)
m = [rm(f1), . . . , rm(fN)]

T. When following the direction of a subarray-based
processing approach as already outlined in D1.2 [2], applying standard array processing as-
sumptions becomes possible, supported by the fact that the envisioned RW subarrays will be
small compared to the full RW aperture. This separation of one large(r) CSP into subarrays is
illustrated at the example of a generic environment floor plan (shown in 2D for simplicity) in Fig-
ure 2.1a. In addition to algorithmic benefits by allowing application of high resolution algorithms,
this also allows an efficient use of resources when dealing with high mobility of multiple devices
and partially dynamic federations. Note that the differentiation between a CSP and the corre-
sponding subarrays can often be relaxed for simplicity, e.g., when processing capabilities are not
of interest to the performance analysis.
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2.1.2 CSP Subarray Model

To arrive at a tractable subarray model we first apply the far-field plane-wave assumption per
subarray and add a clock offset parameter to allow modeling a realistic system that includes
synchronization inaccuracies.

Standard approximations in array processing are the plane-wave far field assumption as well as
negligible propagation attenuation for waves propagating along the (sub)array aperture [6]. This
allows to relax the definition of (2.4) (omitting the UE index l for simplicity) by

cτ
(s)
k,m ≈ cτ

(s)
k + (u

(s)
k )Ta

(s)
k,m (2.5)

with

cτ
(s)
k = ∥p− a

(s)
k ∥ =

x
(s)
k

y
(s)
k

z
(s)
k

 (2.6)

and u
(j)
k = u(φ

(j)
k , ϑ

(j)
k ) representing the direction vector of the kth SMC. The arrival angles at

subarray s for component k are defined as

φ
(s)
k = atan

(
y
(s)
k

x
(s)
k

)
− φ̄(s)

az (2.7)

ϑ
(s)
k = atan


√
(x

(s)
k )2 + (y

(s)
k )2

z
(s)
k

− ϑ̄(s)
el (2.8)

where ϑ̄(s)
az and ϑ̄(s)

el are defining the orientation of subarray s w.r.t. the x and z axis and atan(·)
denotes the corresponding arc tangent function giving unambiguous angles1 (also known as the
four-quadrant inverse tangent). The DOA vector is defined for azimuth angle φ ∈ [0, 2π] and
elevation angle ϑ ∈ [0, π] as

u(φ, ϑ) =

cosφ sinϑ
sinφ sinϑ

cosϑ

 (2.9)

with φ representing the azimuth angle from the x-axis on, ϑ the elevation angle from the xy-axis
upwards positive. An illustration of all quantities for an exemplary SMC is given in Figure 2.1b.
The corresponding vectors eφ and eϑ are unit vectors (see Figure 2.1b) that are defined as

er = cosφ sinϑex + sinφ sinϑey + cosϑez = u(φ, ϑ) (2.10)

eϑ = cosφ cosϑex + sinφ cosϑey − sinϑez =

cosφ cosϑ
sinφ cosϑ

sinϑ

 (2.11)

eφ = − sinφex + cosφey =

− sinφ
cosφ
0

 (2.12)

1Note that this is obtained by simply using the function atan2(..) in Matlab or numpy.arctan2(..) python.
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D3.3 - Position Estimation and Environment Learning

with

ex =

10
0

 ey =

01
0

 ez =

00
1

 (2.13)

being unit vectors in Cartesian coordinates.

The amplitudes of each SMC k at array element m are approximated as constant per subarray
s = {1, . . . , S(j)} of CSP j, i.e., defined according to

α
(s)
k,m ≈ α

(s)
k . (2.14)

To model timing imperfections, at each subarray a clock offset ϵ(s) of the local clock at subarray s
is included, assumed to be independent of the system layout. This represents the offset towards
a common reference clock, with the effect of this offset on the system performance analyzed in
the chapter dealing with fundamental performance bounds.

Inserting the above approximations into (2.3) and taking the clock parameter into account results
in the received signal at array element m as

r(s)
m =

K(s)∑
k=1

α
(s)
k exp(−j2πfc(τ (s)k + ϵ(s)) + jψ

(s)
k )︸ ︷︷ ︸

exp(iϕ
(s)
k )

exp(−j2πfc(u(s)
k )Ta(s)

m )xm(θ
(s)
k ) + n(s)

m (2.15)

where θ
(s)
k = [τ

(s)
k , (u

(s)
k )T]T denotes the position-related parameter vector for the kth SMC and

xm(·) represents the parameterized transmit baseband signal atom defined as

xm(θ) = b(τ) ◦ gm(u) ◦ c(ϵ) ◦ s = b(τ) ◦ gm(φ, ϑ) ◦ c(ϵ) ◦ s (2.16)

where the operator ◦ denotes the Hadamard product (element-wise multiplication). The steering
vectors are defined using the baseband frequencies fn as

[b(τ)]n = exp(−j2πfnτ) phase shift due to delay (2.17)

[gm(φ, ϑ)]n = exp(−j2πfnu(φ, ϑ)Tam/c) phase shift due to array geometry (2.18)
[c(ϵ)]n = exp(−j2πfnϵ) phase shift due to clock offset (2.19)

s = [sb(f1), . . . , sb(fN)]
T baseband signal (vector). (2.20)

Note that τ (s)k and ϵ(s) are not separable on the level of the channel parameters, but in the position
domain, i.e., τ (s)k,l is a function of the UE position, whereas ϵ(s)l is not (according to the model).
Different parameter transformations are briefly discussed in the following section.

2.1.3 Summary of Parameters of Interest

By performing array processing, the received complex baseband signal can be decomposed into
different SMC by means of a beamformer, a parametric super-resolution estimator or similar [8].
The corresponding parameters to estimate are then delays τ ∈ R, directions u(φ, ϑ) ∈ R3 and
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complex amplitudes α ∈ C as well as the number of components to estimate, termed the channel
parameters.

τ
(j)
k,m ∈ R, α(j)

k,m ∈ C SISO channel parameters (2.21)

↓ array processing

(τ
(j)
k ,u

(j)
k ) ∈ R, α(j)

k ∈ R, ϕ(j)
k ∈ R channel parameters (2.22)

↓ position estimation

p ∈ R3︸ ︷︷ ︸
position

, ξ(j) ∈ R, ϵ(j) ∈ R︸ ︷︷ ︸
synchronization

, α
(j)
k ∈ R, ϕ̃(j)

k ∈ R︸ ︷︷ ︸
nuisance

position parameters (2.23)

where the separate component phases are defined according to

ϕ
(j)
k = [ϕ

(j)
1 , . . . , ϕ

(j)
K ]T = [ξ(j), ϕ

(j)
2 , . . . , ϕ

(j)
K ]T = [φ(j), ϕ̃(j)T]T. (2.24)

Parameters of interest are then the UE position and phase and clock synchronization parameters
for each subarray θ = {p, {ϵ(j)}, {ξ(j)}} with ξ(j) = ϕ

(j)
1 being the line-of-sight (LOS) phase,

corresponding to the phase offset between subarrays, and ϵ(j) the clock offset between subarrays.

2.2 Calibration Model

While the propagation channel is reciprocal, under imperfect calibration of transmitter and re-
ceiver this reciprocity will usually not hold. With respect to distributed MIMO systems studied
in Chapter 4, the corresponding channel matrix can be related with the model given in (2.1) by
comparing it with the deterministic part containing a finite number of SMCs and the stochastic
part ws(f) representing scattering or diffuse components

H(j)(f)s(f) +w
(j)
s (f)=

K(j)∑
k=1

H
(j)
k (f)s(f) +w

(j)
s (f) ↔

{
HUL = RCSPHTUE uplink
HDL = RUEHTCSP downlink

that remaining differences lie in the assumed perfect calibration of all antennas, arrays, and radio
frequency (RF) transmit and receive chains alike. These are captured in the matrices RCSP

and TCSP containing the complex gains of transmit and receive chain at the CSP-side, and the
matrices RUE and TUE at the UE-side respectively, which is the topic of Section 4.1.

2.3 Synchronization Model

We assume two levels of synchronization. A general clock offset exists between all devices, and
a phase offset between all devices, both w.r.t. a reference device that is used as time and phase
reference. The clock offset represents coarse synchronization of the separate device clocks,
whereas the phase synchronization represents carrier phase synchronization. Knowledge of
both results in a fully coherent system, e.g., all CSPs can be used together as a large coherent
array. A summary of these different states is

General clock synchronization models and performance are analyzed in [9], with a model similar
to the employed in [10] for a distributed MIMO system seen as a good candidate for the positioning
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unsynchronized unsync. (UN) ϵ(j) unknown, ξ(j) unknown
clock synchronized clk. sync. (CLK) ϵ(j) known, ξ(j) unknown

fully coherent coh. (COH) ϵ(j) known, ξ(j) known

aspect of the RW infrastructure. When it is necessary to consider a time varying clock offset, it is
seen sufficient to assume a linear drift over time [10], according to

ϵ(j)(t) = ϵ(j) + t · δ(j) (2.25)

where t represents the global time, δ(j) is the clock skew of CSP/subarray j, and ϵ(j) is the initial
clock offset.

REINDEER D3.3 Page 10 of 60



D3.3 - Position Estimation and Environment Learning

Chapter 3

Fundamental Performance Limits

This chapter introduces and analyzes the fundamental performance limits for positioning and syn-
chronization for a RW system consisting of multiple CSPs in configurations consisting of multiple
subarrays each. The main point of interest is the achievable performance for positioning for dif-
ferent system configurations, e.g., number of subarrays, number of array elements per subarray,
number of CSPs, as well as the dependency on system parameters such as bandwidth. This will
give valuable insights into hardware requirements to achieve different levels of performance and
allows quantifying losses due to system restrictions.

3.1 CRLB for joint Positioning and Synchronization

Based on the signal model described in Sections 2.1.1 and 2.1.2, we employ a simplified signal
model consisting only of the LOS and DMC in a single-input multiple-output (SIMO) scenario,
where the corresponding received signal at the CSP becomes

r(j)
m = α(j) exp(−j2πfc(u(s)

k )Ta(s)
m + jϕ

(j)
k )xm(θ

(j)
ch ) +w

(j)
s,m +w(j)

m (3.1)

with the deterministic component defined for later use as

µ(j)
m = α(j) exp(−j2πfc(u(s)

k )Ta(s)
m + jϕ

(j)
k )xm(θ

(j)
ch ) (3.2)

where θ
(j)
ch are the channel parameters for the jth CSP. This allows us to investigate fundamental

performance limits that allow a more intuitive interpretation due to the simpler scenario, while still
keeping important aspects of the model. For the DMC, we rely on a general stochastic model,
modeling the stochastic part w(j)

s,m to exhibit an exponential power delay profile (PDP) [11, 12]
with DMC parameters of total power Pdmc, decay time constant Tdmc and onset time τdmc, chosen
to reasonable values for the corresponding environment under consideration. When necessary,
these can be stacked into the DMC parameter vector [Pdmc, τdmc, Tdmc]

T. For simplicity, the DMC
parameters are assumed known, e.g., due to calibration measurements in actual deployment.

Covariance Matrix of the Diffuse Component

For simplicity, we assume the DMC w
(j)
s,m to be statistically independent between different array

elements, which allows the use of the Kronecker and Hadamard products. The covariance matrix
of the noise terms of all array element signals of DMC w

(j)
s = [w

(j)
s (f1), . . . ,w

(j)
s (fN)]

T and
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additive white Gaussian noise (AWGN) w(j) = [w(j)(f1), . . . ,w
(j)(fN)]

T for an arbitrary CSP j
(neglecting the index for brevity) is defined as [13]

C(θdmc) = E[(ws +w)(ws +w)H] (3.3)

= (Cm(θdmc)⊗ IM) ◦ (ssH ⊗ 1M1T
M) + σ2IMK (3.4)

= (Cm(θdmc) ◦ ssH)⊗ IM + σ2IMN (3.5)

with a per-array-element covariance matrix

Cm(θdmc) = toep[κ(θdmc),κ(θdmc)
H] (3.6)

where κ(θdmc) is the sampled DMC power spectral density defined as [11, Eq. (2.61)]

ψdmc(f) =
Pdmc

1/(BTdmc) + j2πf
exp(−j2πfτdmc) (3.7)

where Pdmc, τdmc, and Tdmc, are the power, onset delay, and the decay constant of the DMC,
respectively.

3.1.1 Cramér-Rao Lower Bound

In this section, we formulate and derive the CRLB to investigate the achievable accuracy in terms
of joint positioning and synchronization. To this end we extend the bounds derived for a single
CSP in [14] and for a distributed system of uniform linear arrays (ULAs) [13] and incorporate
imperfect synchronization of the overall system. The CRLB for the variance of any unbiased
estimator is defined as [15]

Eθ

[
(θ̂ − θ)(θ̂ − θ)T

]
⪰ J−1

pos (3.8)

where Jpos is the FIM for the parameter vector θ = [pT,θT
sync,α

T]T containing the UE position,
the synchronization parameters clock and phase offset in θsync = [{ϵ(j)}, {φ(j)}]T ∈ RNsyn in
suitable configurations, discussed below in detail, as well as nuisance parameters in form of LOS
amplitudes for each CSP-UE link α = [α(1), . . . , α(J)]T. Nsyn is used to denote the number of
synchronization parameters. We assume that each CSP j contributes independent information
on θ, i.e., we assume DMC and noise to be identical distributed and independent for each CSP.
The FIM for the joint positioning and synchronization problem thus becomes the sum over the
FIM for each CSP according to

Jpos =
J∑

j=1

J
(j)
pos =

J∑
j=1

T (j)J
(j)
ch (T (j))T (3.9)

where J
(j)
pos represents the FIM contribution provided by the jth CSP, which is related to the chan-

nel parameter FIM J
(n)
ch of each CSP via the corresponding Jacobian matrix T (j). The channel

parameter vector of the nth RW is defined as

θ
(j)
ch = [φ(j), ϑ(j), τ (j), ϕ(j), α(j)]T ∈ R5×1 (3.10)
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containing the delay τ (j), the angle-of-arrival (AOA) in azimuth φ(j) and elevation ϑ(j), the ampli-
tude α(j) and phase ϕ(j) for the corresponding LOS path of the jth CSP. The elements of the FIM
J

(n)
ch in (3.9) are defined as [15, Sec. 15.7]

[J
(j)
ch ]m,n = 2R

[
∂(µ(j))H

∂[θ
(j)
ch ]m

C−1 ∂µ(j)

∂[θ
(j)
ch ]n

]
(3.11)

where µ(j) = α(j) exp(. . . )x(θ
(j)
ch ) as defined in (3.2) where x(θ

(j)
ch ) contains all frequency sam-

ples of the M (j) array element signals for the jth CSP in suitable stacking order. The derivation
of the elements of the channel FIM is given in more detail in Appendix A.

To gain insight into the achievable performance, we investigate the three levels of synchronization
outlined in Section 2.3, thus requiring a different Jacobian matrix T (j) for each CSP, due to the
different number of parameters that need to be estimated. We consider the case of a fully coher-
ent system (all subarrays of all CSPs are clock and phase synchronized), the case of all CSPs
and corresponding subarrays exhibiting a phase offset w.r.t. some arbitrarily chosen reference
phase while being fully clock synchronized, and the case of unknown phase and clock offsets for
all CSP subarrays. While a fully coherent system is expected to give the highest accuracy due
to the extremely large aperture and consequently resolution, it is not considered to be a realistic
scenario in actual deployment, but included as the theoretically possible optimum baseline.

The general Jacobian matrix T (j) can be summarized as a block matrix

T (j) =
∂(θ

(j)
ch )

T

∂θ
=


P

(j)
φ Pϑ P

(j)
τ P

(j)
ϕ 0

0 0 C
(j)
τ 0 0

0 0 0 C
(j)
ϕ 0

0 0 0 0 1
(j)
J

 ∈ R(3+Nsyn+J)×5 (3.12)

transforming the channel parameters θ
(j)
ch with j = 1, . . . , J into the (common) position parame-

ters θ through

θ
(j)
ch ∈ R5×1 T (j)

−→ θ =


θcoh = [pT,αT]T ∈ R(3+J)×1 coherent
θclk = [pT,ϕT,αT]T ∈ R(3+2J)×1 clock synchronized
θun = [pT, ϵT,ϕT,αT]T ∈ R3(J+1)×1 unsynchronized

(3.13)

where the clock and phase offset parameters are ϵ = [ϵ(1), . . . , ϵ(J)]T and ϕ = [ϕ(1), . . . , ϕ(J)]T,
and the LOS amplitudes for each CSP-UE link α = [α(1), . . . , α(J)]T. The unit vector 1(j)

J is defined
as a length J zero vector with 1 at the jth element 1(j)

J = [0, . . . , 0, 1, 0, . . . , 0]T. It assigns the
amplitude α(j) in θ

(j)
ch to the corresponding amplitude in α in the parameter vectors for positioning

as defined in (3.12).

The block matrices relating channel parameters to the position are common to all of the scenarios
outlined in (3.13). These are defined for mapping the delay to the position as

P (j)
τ =

p− a(j)

∥p− a(j)∥ =
p− a(j)

cτ (j)
=

1

cτ (j)

cos(φ(j) + φ̄
(j)
az ) sin(ϑ

(j) + ϑ̄
(j)
el )

sin(φ(j) + φ̄
(j)
az ) sin(ϑ

(j) + ϑ̄
(j)
el )

cos(ϑ(j) + ϑ̄
(j)
el )

 ∈ R3×1 (3.14)
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from the derivative of τ (j) = τ
(j)
k=1 in (2.5) w.r.t. the position. The mapping of the component phase

ϕ(j) = ϕ
(j)
k=1 to the position is found as

P
(j)
ϕ =

−2π(p− a(j))

λ ∥p− a(j)∥ =
−2π(p− a(j))

λcτ (j)
∈ R3×1 (3.15)

from the derivative of (2.5) w.r.t. position. Note that this term will only provide information when
the general phase term ϕ

(j)
k is known, i.e., in a fully coherent system, as it would otherwise need

to be estimated as a nuisance parameter.

The Jacobian matrix block for the azimuth angle P
(j)
φ is given as

P (j)
φ =

1

cτ (j)


− sin(φ(j)+φ̄

(j)
az )

sin(ϑ(j)+ϑ̄
(j)
el )

cos(φ(j)+φ̄
(j)
az )

sin(ϑ(j)+ϑ̄
(j)
el )

0

 (3.16)

and for the elevation angle as

P
(j)
ϑ =

1

cτ (j)

cos(φ(j) + φ̄
(j)
az ) cos(ϑ

(j) + ϑ̄
(j)
el )

sin(φ(j) + φ̄
(j)
az ) cos(ϑ

(j) + ϑ̄
(j)
el )

− sin(ϑ(j) + ϑ̄
(j)
el )

 (3.17)

by calculating the derivatives of (2.7) and (2.8), respectively, w.r.t. the position, i.e., x-, y- and
z-coordinates of p. While these remain the same for all scenarios (coherent, clock synchro-
nized and unsynchronized), the matrix blocks for the synchronization parameters vary and are
described in the following.

Coherent system: For the coherent case, no synchronization parameters need to be estimated
and the carrier phase can be exploited for positioning. Consequently, the resulting Jacobian
matrix for each CSP maps to the same synchronization parameters and becomes

T
(j)
coh =

[
P

(j)
φ P

(j)
ϑ P

(j)
τ P

(j)
ϕ 0

0 0 0 0 1
(j)
J

]
∈ R(3+J)×5. (3.18)

This Jacobian matrix performs the transformation from J channel parameter vectors θ
(j)
ch to the

coherent positioning parameter vector θcoh.

Clock synchronized system: For the clock synchronized case, the carrier phase cannot be
exploited for positioning and one needs to estimate the clock offset between different subar-
rays/CSPs. Each of the phase offset parameters is mapped to its own phase offset parameter in
the resulting position domain paramter vector θclk. Consequently, the corresponding matrix block
mapping between phase offsets becomes

C
(j)
ϕ = 1

(j)
J = [0, . . . , 0

j
−
1
→

, 1

j
→

, 0

j
+
1
→

, . . . , 0

J
→

]T (3.19)

and the full Jacobian matrix for this scenario becomes

T
(j)
clk =

P
(j)
φ P

(j)
ϑ P

(j)
τ P

(j)
ϕ 0

0 0 0 1
(j)
J 0

0 0 0 0 1
(j)
J

 ∈ R(3+2J)×5. (3.20)
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Unsynchronized system: For the completely unsynchronized system both the phase offset
and time offset need to be estimated as nuisance parameters, e.g., they are unknown, and can-
not be exploited for positioning directly, but are estimated for each subarray/CSP. Note that this
scenario corresponds to the common model of complex component amplitudes encountered in
complex baseband notation [4, 16, 14]. Each of the phase offset parameters is mapped to its own
phase offset parameter in the resulting position domain paramter vector θclk. Consequently, the
corresponding matrix block mapping between phase offset parameters and clock offset parame-
ters are identical according to

C
(j)
ϕ = C(j)

τ = 1
(j)
J (3.21)

and the full Jacobian matrix for this scenario becomes

T
(j)
un =


P

(j)
φ P

(j)
ϑ P

(j)
τ P

(j)
ϕ 0

0 0 1
(j)
J 0 0

0 0 0 1
(j)
J 0

0 0 0 0 1
(j)
J

 ∈ R3(J+1)×5. (3.22)

3.1.2 Fundamental Error Bounds

To compute the position error bound (PEB) and synchronization error bound (SEB) from the
FIM Jθ in (3.9), we partition the parameter vector θ = [θT

w ,θ
T
u ]

T for the different scenarios into
(“wanted”) parameters of interest θw = [pT,θT

sync] consisting of the position and synchronization
parameters, and into the (“unwanted”) nuisance parameters θu = α in terms of the component
amplitudes [7]. The FIM is partitioned correspondingly as

Jθ =

[
Jθwθw Jθwθu

JT
θwθu

Jθuθu

]
∈ R(3+Nsync+J)×(3+Nsync+J). (3.23)

To extract the bounds for the parameters of interest, one can either directly invert Jθ and in-
vestigate the corresponding entries, or compute the equivalent FIM (EFIM) [7, 17, 18] according
to

Jpos = Jθwθw − JθwθuJ
−1
θuθu

JT
θwθu
∈ R5×5. (3.24)

Through (3.8), the CRLB for the paramters is then given as

E
[
(θ̂w − θw)(θ̂w − θw)

T
]
⪰ J−1

pos (3.25)

which can have computational advantages, while also allowing to obtain closed-form solutions for
small setups, i.e., small matrices. Independently, we employ the definition in (3.25) to define the
PEB and the SEB in terms of the clock error bound (CEB) and phase error bound (PHEB).

Position Error Bound (PEB)

We define the PEB as the trace of the accuracy in x-, y- and z-directions according to [13]

PEB =

√
tr
[
[J−1

pos]1:3,1:3

]
. (3.26)

While this does not allow to get insight into the distribution of the error along the different coordi-
nates, it allows for a single value comparison of the performance.
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Synchronization Error Bounds (SEB)

For the synchronization bounds, we employ a similar definition as for the PEB. As there are J
clock and phase offset parameters to estimate, we define the CEB as the average clock offset
estimation error and the PHEB as the average phase offset estimation error according to

CEB =
1

J

J+4∑
ℓ=4

√
[J−1

pos]ℓ,ℓ (3.27)

PHEB =
1

J

2J+5∑
ℓ=J+5

√
[J−1

pos]ℓ,ℓ (3.28)

3.2 Numerical Analysis and Performance Evaluation

In this section, we investigate the theoretical performance limits for localization and synchroniza-
tion by means of numerical analysis of the CRLB. To this end, we perform a numerical analysis of
the results presented in the previous section, investigating parameters of interest. These are most
importantly the effect of the signal bandwidth B on the positioning performance and the effect the
size and distribution of the CSPs have on the spatial distribution of PEB. While simulations can
be extensive when changing many system parameters, we will focus on varying system parame-
ters while keeping channel and propagation parameters constant, i.e., the DMC parameters are
assumed constant and known, discussed in the following section.

Common Simulation Parameters

The most important propagation parameter settings are outlined in the following paragraph, with
specific values added when necessary. The channel amplitudes are generated as α(j)

n ∝
√
Ptx·PL

where Ptx denotes the UE transmit power and path loss PL is set according to free space, i.e.,
PL = λ/(4π∥p − a

(j)
n ∥), whereas the noise power is set to unity, i.e., σ2

w = 1 without loss of
generality1. For the DMC, the normalized coherence bandwidth is set to βdmc = 1/(TdmcB)
with Tdmc = 10/c decay time set to a distance of 10m, the normalized onset time to τdmc =
B
K
(τ

(j)
k=0,n + 1/c), i.e., the DMC onset is delayed by 1m w.r.t. the LoS, and the peak power Pdmc is

chosen to yield a specific diffuse-signal-to-noise ratio (DNR) defined as DNR = αdmc/σ
2
w = 20 dB,

which is kept constant over the whole environment. Note that while this selection of the DNR most
certainly is not accurate in realistic environments, it nonetheless removes a degree of freedom
and allows for controlled simulations, and can furthermore be taken into account in the analysis.
For the SNR we use SNR1m = 30 dB, defined for a reference distance of 1m in all simulations.

Investigated System Configurations

The considered scenario consists of a network of N = {1, 2, 4} CSPs in a medium, with the
UE placed at suitable locations p = [x, y, z]T to investigate the positioning performance. The
CSPs consist of a varying number of uniform rectangular arrays (URAs) subarrays, each with
M (j) antennas spaced at d = λ/2. The UE transmits some signal, e.g., an OFDM pilot, at a
carrier frequency fc = 6.95GHz. The signal bandwidth is denote as B containing N frequency
bins, with N selected to ensure correct sampling of all signals and B varied as system parameter
to investigate.

1Note that the propagation parameters are defined as ratios w.r.t. the noise variance to ensure proper relations.
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Table 3.1: System configurations investigated in different sections.

antennas per subarray subarrays per CSP CSPs antennas
id geometry spacing layout spacing J Ntotal

(I-a) 4× 4 λ/2 1 − 4 64
(I-b) 8× 8 λ/2 1 − 4 256
(I-c) 4× 4 λ/2 2× 2 λ/2 4 256
(I-d) 8× 8 λ/2 4× 4 λ/2 4 4096
(I-e) 1 − 16× 16 λ/2 4 1024

(II-a) 4× 4 λ/2 4× 4 λ/2 4 1024
(II-b) 4× 4 λ/2 4× 4 5λ/2 4 1024
(II-c) 8× 8 λ/2 2× 2 λ/2 4 1024
(II-d) 8× 8 λ/2 2× 2 10λ/2 4 1024
(II-e) 4× 4 λ/2 16× 1 5λ/2 4 1024
(III-a) 4× 4 λ/2 8× 4 λ/2 2 1024
(III-b) 4× 4 λ/2 8× 4 5λ/2 2 1024
(III-c) 8× 8 λ/2 4× 2 λ/2 2 1024
(III-d) 8× 8 λ/2 4× 2 10λ/2 2 1024
(III-e) 4× 4 λ/2 16× 2 5λ/2 2 1024
(IV-a) 4× 4 λ/2 8× 8 λ/2 1 1024
(IV-b) 4× 4 λ/2 8× 8 5λ/2 1 1024
(IV-c) 8× 8 λ/2 4× 4 λ/2 1 1024
(IV-d) 8× 8 λ/2 4× 4 10λ/2 1 1024

The system setup considered in the performance analysis is described in Table 3.1. It indicates
the number of antennas per subarray and the subarray geometry, as well as the geometric layout
of the subarrays for each CSP, i.e., the number of rows and columns of subarrays and the cor-
responding spacing. When using different bandwidth values, only a single UE is localized, giving
the PEB for the UE at that specific location. In that case, the number of antennas per CSP is
varied, first increasing the array itself (I-a, I-b), and next by employing subarrays of varying size
(I-c, I-d) and lastly by investigating spherical wave positioning in (I-e). Note that the spacing is
varied between-subarrays, while keeping the spacing between subarray elements constant at λ/2
for the selected carrier frequency. E.g., spacing subarrays at λ/2 gives a continuous CSP are
covered with antennas, while a spacing of 10λ/2 between subarrays yields gaps of 5λ between
the outermost array elements of adjacent subarrays.

When analyzing the spatial distribution of the PEB for different geometric configurations of CSP
in terms of size and layout of subarrays, the bandwidth is kept fixed at B = 100MHz. Additionally,
the total number of antennas is fixed at Ntotal = 1024, effectively increasing the aperture per CSP
when reducing the number of CSPs.

3.2.1 Positioning and Synchronization Performance

We start by numerically analyzing the PEB outlined in Section 3.1 to investigate how the number
of antennas M per CSP and bandwidth B impact the ultimate positioning accuracy. Fig. 3.1
shows the bounds evaluated for all three synchronization scenarios of coherent (COH, dotted),
clock synchronized (CLK, dashed), and unsynchronized (UN, solid).

The PEB shown in Fig. 3.1a shows the characteristic bandwidth dependency of DMC channels,
where the stronger overlap at lower bandwidth values results in a decrease of the effective signal-
to-interference-plus-noise ratio (SINR), which represents the ratio of signal power to diffuse and
noise power. This SINR decrease is attributable to the increasing overlap between DMC and
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the LOS component that contains position information. At large bandwidth values, the PEB ap-
proaches first a lienar trend representing the PEB for the AWGN-only case, where the DMC and
the LOS are well separated and the SINR becomes identical to the SNR, followed by a constant
value. Showing the scaling behavior in terms of the system layout, the different configurations
outlined in Table 3.1 as (I-a) to (I-e), gradually increasing the number of antenna elements per
subarray, as well as the number of subarrays per CSP. Starting from the unsynchronized system
(UN), an increase of the array size of the CSP yields the expected improvement due to the in-
creased aperture (compare I-a to I-b). The split of the larger CSP into four subarrays with equal
aperture and number of array elements exhibits a slight performance decrease, due to the need
to estimate the clock offset between subarrays (compare I-b to I-c). To achieve a similar perfor-
mance with 4 × 4 subarrays as with a single 8 × 8 array, one needs 2 times the aperture in both
horizontal and vertical directions (compare I-d to I-b). Lastly, a SIMO receiver (I-e), as expected,
achieves the performance of similar sized arrays when clock-synchronized or coherent. For the
coherent case, (I-e) represents the case of spherical wavefront positioning with an antenna array,
which shows identical performance to the coherent subarrays with the same aperture, i.e. I-d and
I-e show identical curves. This is due to the rather small size of the array, where the plane wave
model is still a valid approximation. This shows that for the case of coherent subarrays, arrays
with the same aperture, i.e., geometric size, exhibit the same performance.

Regarding the achievable gain due to being clock-synchronized, it is interesting to note that only
at large bandwidth values, a performance gain can be achieved. This can be attributed to the fact
that at large bandwidth values, first the information provided by the range measurements starts to
dominate, and second the overlap between DMC and LOS is reduced and the estimation of the
clock offset improves. This improvement can be seen in Figure 3.1a at bandwidth values above
100 MHz, where the PEB again approaches the linear trend of the AWGN-only bounds, before
approaching a constant value.

Comparing all three bounds curves in Fig. 3.1, one observes that the points where the synchro-
nization configurations CLK deviate noticeably from UN occur at roughly B = 100MHz. The
location of this point can be linked to the definition of the DMC, which was modeled to have a
delayed onset of 1m w.r.t. the LOS, which will be a similar delay as the duration of the transmit
pulse/signal at 100MHz. Consequently, the reducing overlap of DMC and LOS allows for a better
estimate of the LOS phase, which is modeled to correspond to the phase offset. A similar effect
can also be observed when analyzing AOA estimation in DMC environments (c.f., [14]).

3.2.2 Performance in an Exemplary Environment

Next, we examine the system performance when keeping the number of total antennas fixed, but
distributing them in different geometric configurations and varying separations into subarrays. The
corresponding layouts are summarized in Table 3.1 as (II-a) to (IV-d), for a total number of CSPs
J = {1, 2, 4}. The results are shown in Fig. 3.2 and 3.3. To highlight the resulting effect on the
achievable accuracy, we plot the PEB evaluated over a spatial grid in an exemplary environment
represented as a rectangular room of dimensions 5m × 9m × 3.6m. Note that while walls are
indicated, we solely model DMC with the same statistical properties as before. Furthermore, note
that the colorbar scaling varies to allow for easier visualization. In addition to the PEB also the
configuration at the corresponding CSPs is plotted.

Figure 3.2 shows the spatial distribution when employing J = 4 CSPs, positioned in the center
of the corresponding walls of the environment. The top row (Fig. 3.2a-3.2c) shows all three syn-
chronization levels for configuration (II-a), the middle row (Fig. 3.2d-3.2f) for configuration (II-b)
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Figure 3.1: PEB (a), CEB (b) and PHEB (c) evaluated for varying system bandwidth B values for
system configurations (I-a) to (I-e) from Table 3.1.
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with the subarrays spaced farther than λ/2 apart and the bottom for (Fig. 3.2g-3.2i) for configu-
ration (II-e). The resulting distribution of the PEB depends on the distance to the corresponding
CSP/subarray due to distance dependency of the angle estimation accuracy [18, 14], in addi-
tion to the direction dependency relative to each subarray, i.e., the estimation accuracy is worst
from “endfire” direction. The latter manifests in the reduced performance in the corners of the
investigated environment, where the PEB increases above 10 cm for the UN case. The increased
spacing between subarrays results in general in a performance increase, due to the increased
aperture. By considering the full system to be clock synchronized (CLK) the performance is again
increased, with little change to the general shape of the PEB distribution. For the coherent case
(COH) the large aperture results in a PEB well below 5mm, which is, while unrealistic in an actu-
ally deployed system, still the ideal performance. When keeping the increased subarray spacing
but trading the number of subarrays for the larger (8 × 8) subarrays, the PEB drops below 5 cm
for most of the environment. A byproduct of the fewer and larger subarrays is the fact that the
clock estimation cost is reduced, with noticeably less improvement achievable when assuming
CLK. With the large aperture in COH, the improvement is limited, as the large spatial distribution
outweighs the rather small increase in terms of the subarray aperture.

An improvement of the spatial distribution while keeping the smaller (4 × 4) subarrays can be
achieved by increasing the per-CSP aperture, stacking all subarrays side by side (horizontally),
see Figure 3.3a-3.3a, or when using J = 2 by increasing the horizontal aperture, see Figure 3.3d-
3.3f. While this gives the most desirable distribution in the horizontal plane that was evaluated,
the vertical performance will be worse. Depending on the target use case, different configurations
should be considered for specific scenarios, e.g., when positioning mobile robots that will mostly
move along the horizontal axis, or for localizing goods in high shelves, which would require higher
resolution along the vertical axis.

Lastly, the performance in terms of the PEB for a single CSP will drastically reduce with increasing
distance, as the angle contribution that provides the highest position information in close proximity
decays fast, with the lower distance resolution dominating the positioning performance in the
“array far field” of the CSP. In contrast to the scenarios encompassing more than one CSP, the
improvement in CLK state is much larger, showing that accurate synchronization will be a key
ingredient to achieve a high long-range positioning accuracy. As before, considering this effect
can be important in system design, e.g., in use cases where “close” proximity to CSPs cannot
always be guaranteed, or is not possible due to structural characteristics.

An alternative illustration of the PEB is given in Fig. 3.4, showing CDF plots of the PEB distribu-
tions for the scenarios for (II-a) to (IV-d) from Table 3.1. Note that the abscissa in the subplots
show different range for improved illustration. Comparing the simulation results obtained for dif-
ferent numbers of CSPs shows that even though the number of antennas is fixed to Ntotal = 1024,
the governing factor for the performance is the geometric distribution of the CSPs as well as the
configuration of the subarrays. While the COH state again shows the high performance seen in
Figures 3.2 and 3.3, it clearly shows that the subarray spacing can serve as an important factor
to increase the performance. What is commonly termed spatial aliasing, i.e., spacing array ele-
ments farther apart than λ/2, introduces ambiguities in the array response when working with a
single array [14]. As the subarrays themselves still employ an inter-element spacing of λ/2, the
increased aperture gives a performance increase (e.g., compare (II-a) and (II-b) in Figure 3.4a)
without the undesirable side effect of ambiguities, while the use of smaller subarrays still poses
to be a limiting factor (e.g., compare (II-a) and (II-c) in Figure 3.4a). It is furthermore important to
note, that the effect of the clock offset reduces the performance when the total system aperture,
i.e., meaning the aperture of the CSPs, decreases. This can be seen when comparing Figure 3.4a
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(J = 4) and 3.4c (J = 1), where for (IV-a) only 20% of the PEB values are below 10 cm, whereas
for (II-a) approx. 90% are, with the former employing all subarrays at a single CSP. Nonetheless,
the performance increase in terms of a reduction of the PEB is much stronger when employing
all subarrays at a single CSP location. When assuming all subarrays to be clock synchronized
(CLK), the spacing of the subarrays has hardly any influence, with 70% for 4× 4 subarrays (IV-a)
of the analyzed grid points showing a PEB below 10 cm, and 90% for 8× 8 subarrays (IV-a).

3.3 Conclusion

The numerical analysis of the bounds has shown the trade-offs that can be expected from the RW
infrastructure, focusing on a subarray-based configuration of each of the CSPs. This approach
has already been employed in D1.2 [2] for channel modeling, shown that it is feasible to capture
the SMC visibility over an array with a large aperture, i.e., covering a large surface area, by
processing subarrays separately with super-resolution algorithms that achieve a high accuracy.
In addition, small subarrays allow for efficient implementation of said algorithms and allows to
efficiently distribute computation resources.

This is further analyzed in in Chapter 4, where two candidate algorithms suitable for positioning
based on subarrays are described. An EKF-based algorithm aims to perform joint clock offset
estimation and positioning (Section 4.3) and a graph-based algorithm is used to perform data
fusion of (simulated) measurements, using measurements modeled to correspond to what can
be obtained from a multipath super-resolution channel estimation algorithm applied to subarrays
(Section 4.2). In addition to these, the reciprocity calibration performance is analyzed in the
context of a distributed MIMO system (Section 4.1).

Regarding the formation and performance of federations (see D2.1 [1]) as well as regarding the
processing distribution, a subarray-based approach is also favorable as it increases the flexibil-
ity of CSPs, e.g., by having variable coverage regions, or by improving power consumption by
employing only subsets of the available subarrays for positioning or communication.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3.2: PEB distribution for configurations (II-a) in (a)-(c), (II-b) in (d)-(f) and (II-d) in (g)-(i)
specified in Table 3.1.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3.3: PEB distribution for configurations (II-e) in (a)-(c), (III-b) in (d)-(f) and (IV-b) in (g)-(i)
from Table 3.1.
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Figure 3.4: CDF curves for the different system configurations outlined in Tab. 3.1, as well as
for different the synchronization states. In (a) there are J = 4 CSPs, in (b) J = 2 CSPs, and
in (c) a single CSP is used (J = 1). Note that the total number of antennas remains fixed as
Ntotal = 1024.

REINDEER D3.3 Page 24 of 60



D3.3 - Position Estimation and Environment Learning

Chapter 4

Algorithms for Calibration,
Synchronization and Positioning

This chapter introduces candidate algorithms covering the topics of reciprocity calibration, syn-
chronization and positioning important for various fields of application and use-cases of the RW
infrastructure.

Reciprocity calibration is important to enable coherent operation of distributed MIMO systems. An
algorithm taking non-reciprocal RF chains into account is discussed in Section 4.1. In Section 4.3,
an EKF-based positioning and synchronization algorithm is adapted from an existing algorithm
proposed in [10] to work on the subarray level, as it can cope with a (slowly) time varying clock
offset between subarrays. To work in non-stationary propagation scenarios, e.g., in non-line-of-
sight (NLOS) condition, it is extended with a simple ray tracer that allows to employ environment
information, aiming to increase the robustness. In Section 4.2, a graph-based algorithm for chan-
nel tracking proposed in [19], is adapted to perform data fusion of (reasonably closely-spaced)
subarrays of a single CSP, allowing to estimate SMCs and considering the limited visibility of
components for the separate subarrays for which the measurements are fused.

4.1 Reciprocity Calibration in Distributed Massive MIMO for
Coherent Operation

Distributed Massive MIMOs, also known as cell-free massive MIMOs, is an emerging technol-
ogy and a candidate for 6G multi-antenna systems [20]. It relies on phase-coherent operation
of large numbers of antenna panels, which are distributed over a larger area. Two important
implementations are RadioStripes (with antennas along a cable) and large intelligent surfaces,
e.g. RadioWeaves [21] (with antennas integrated into walls and other objects). It is foreseen
that practical distributed massive systems will be built of CSPs, and that each CSP comprise
multiple antennas elements (creating a, so-called, antenna panel), and where the CSPs are in-
terconnected with one another via a central processing unit (CPU). The preferred operation is
in time-division duplexing mode, where uplink-downlink reciprocity of the radio channel can be
exploited in order to estimate the downlink channels using uplink pilots, much like in conventional
massive MIMOs. This operation mode is typically referred to as reciprocity-based operation.

However, the assumption of uplink-downlink radio channel reciprocity is only true in practice to
a certain extent. More specifically, even though it is well known that the propagation channel
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is reciprocal, the transceiver radio frequency (RF) units sitting at both ends of the radio link are
generally not. Thus, transceiver calibration is required in order to be possible for the system to
operate in the reciprocity-based mode. There exist different types of calibration approaches in the
literature that restore some degree of reciprocity of a wireless link. Some approaches rely on 1)
bi-directional signaling between UEs and the CSP, other approaches rely on 2) internal calibration
cable networks at the CSP end of the link, and other approaches rely on 3) over-the-air signaling
between pairs of antennas of the CSP. However, for the setup of a distributed massive MIMOs
system, only the third approach is suitable since the system should typically not rely on the quality
of the link to UEs for calibration, nor is it suitable to install cables between distributed CSPs with
the sole purpose of system calibration. Similar problems are covered in literature in [22, 23].

However, the calibration approaches in the literature address system setups where each transceiver
to be calibrated is associated with a single antenna element, i.e. they address calibration of fully-
digital systems. In addition, it is foreseen that practical distributed massive MIMOs systems will
be built of multiple CSPs, and that each CSP comprises multiple antenna elements. Such CSP’s
multiple antennas are controlled via (tunable) analog beamforming, mainly implemented in the
RF stage of the radio. The key insight for distributed massive MIMOs calibration is that the
possibility of properly tuning, and hence sweeping, such beamformers provide extra degrees of
freedom to the system which can be exploited to obtain a multitude of over-the-air measurements
for calibration purposes.

We study reciprocity calibration of distributed massive MIMOs systems [24]. In particular, we write
a model for the calibration setup, where a joint beam scanning procedure is executed by all CSPs
of the network in order to collect measurements for calibration. We lay out the maximum-likelihood
(ML) cost function for the calibration problem at hand, and propose a computationally-efficient
alternating optimization procedure. We show that the optimization procedure is guaranteed to
converge. Via Monte-Carlo simulations, we verify performance enhancements of the proposed
method, compared to straightforward applications of state-of-the-art calibration schemes in the
context of distributed massive MIMOs.

4.1.1 Problem Description

For illustrative but non-limiting purposes, assume a narrowband distributed massive MIMOs link
with L single-antenna UEs on the other end, and M transceiver chains at the other end, e.g.,
assume that each antenna chain is associated with a distinct CSP. Assuming a noiseless channel
for the moment, theM×L uplink narrowband radio channel HUL, representing e.g. an orthogonal
frequency division multiplexing (OFDM) subcarrier, is modelled as

HUL = RCSPHTUE, (4.1)

where H is a matrix comprising all channels effects occurring between the transmitter and re-
ceiver chains. For example, in fully-digital beamforming systems, the channel matrix H typically
denotes the propagation channel [22]. The matrix TUE = diag

(
tUE
1 , . . . , tUE

L

)
is a diagonal ma-

trix where each diagonal entry models the complex gain of each UE’s transmitter chain, and
RCSP = diag

(
rCSP
1 , . . . , rCSP

M

)
is a diagonal matrix where each diagonal entry models the com-

plex gain of each CSP’s receiver chain.

Within the same time/frequency coherence interval, the associated downlink channel is given by

HDL = RUEHTCSP, (4.2)
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where TCSP = diag
(
tCSP
1 , . . . , tCSP

M

)
and

RUE = diag
(
rUE
1 , . . . , rUE

L

)
model the associated transmitter and receiver gains of each UE and

each CSP, respectively.

Note that the channel matrix H is assumed to be reciprocal. However, the end-to-end radio
channel is not reciprocal, i.e., HUL ̸= HT

DL, where (·)T denotes the transpose operator. This is
because the gains of the transceiver circuitries are not reciprocal (e.g., TCSP ̸= TUE). Due to this
non-reciprocity aspect, it is not immediately obvious how downlink transmission can be performed
based on channel estimates obtained from uplink pilot signals.

To indicate how to address the challenge with the non-reciprocal transceiver terms, let’s assume
for now that the CSP side of the link has knowledge of the following matrix

C = diag (c1, . . . , cM) = TCSP (RCSP)
−1 , (4.3)

up to an a non-zero complex-valued unknown scaling term α.

Via uplink pilot signals, the CSP can estimate HUL. If the CSPs wants to jointly perform, e.g.
ZF transmission to the UEs, they do so by the computing the Moore–Penrose inverse of HT

UL,
namely

P = H∗
UL

(
HT

UL H
∗
UL

)−1

, (4.4)

where (·)∗ denotes element-wise complex conjugation. However, since the matrix P was com-
puted via uplink signals, it cannot be directly used as a downlink precoder since it is not matched
to the (non-reciprocal) downlink channel HDL. To solve this, each CSP multiplies its pre-coded
signals with its associated entry of (αC)−1. More specifically, the pre-coded signal at transceiver
m is multiplied with cm, with 1 ≤ m ≤M . With that, the effective downlink channel H ′

DL is written
as

H ′
DL = HDLα

−1C−1P

= HDLα
−1C−1H∗

UL

(
HT

UL H
∗
UL

)−1

= HDLα
−1C−1 R∗

CSPH
∗T ∗

UE

(
TUE HT |RCSP|2H∗ T ∗

UE

)−1

= HDLα
−1T−1

CSP |RCSP|2 H∗ T ∗
UE

(
TUE HT |RCSP|2 H∗ T ∗

UE

)−1

= HDLα
−1 (TCSP)

−1 (HT
)†
(TUE)

−1

= α−1RUEH
TTCSP (TCSP)

−1 (HT
)†
(TUE)

−1

= α−1RUE (TUE)
−1 , (4.5)

which is a diagonal channel matrix with unknown diagonal entries. The operator (·)† denotes the
Moore-Penrose inverse, and |·|2 denotes element-wise squared absolute value.

Such unknown diagonal entries can be obtained using only one downlink reference signal, which
is beamformed in the downlink towards all UEs, using the calibrated channels. Thus, Np uplink
pilot signals plus one downlink reference signal are sufficient to conduct all training needed for
this type of calibrated reciprocity-based transmissions. This results in much less training overhead
compared to explicit downlink channel estimation.

In conclusion, the knowledge of the matrix C allows coherent transmissions, e.g. ZF downlink
transmissions, with no inter-user interference over what is effectively a calibrated uplink/downlink
channel setup. The diagonal matrix C can thus be interpreted as a calibration matrix, and thus
we are interested to estimate its diagonal elements.
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4.1.2 Calibration Signal Model

In this section we propose our method to estimate the calibration matrix C. We note that the
novelty of our proposal lies in the fact that the effective channel H in (4.1) is not only made of the
propagation channel, as in prior calibration works in massive MIMOs, but is also comprised by a
beamforming matrix W . More specifically

H = WHp, (4.6)

where Hp models the propagation uplink channel and each CSP’s beamformer is given by each
row of W . The possibility of steering such beamformers provides extra degrees of freedom to the
system which can be exploited to obtain a multitude of measurements for calibration purposes.
We elaborate on this concept in the current and next sub-sections.

Our measurement procedure relies on a joint beam sweep by all network CSPs. That is, a
CSP acts as a transmitter and scans each of its Nb beams while the other J − 1 CSPs act as
receivers and scan each of their Nb beams as well. (For simplicity, assume that all transmitters
and receivers are capable of grid-of-beams beamforming, and that Nb denotes the number of
transmit and receive beams at all CSPs). This process is repeated with another CSP acting as
transmitter, and it stops when all CSPs have transmitted. The number of measurements resulting
from this extensive beam sweeping procedure is therefore JN2

b . (We note that other sub-cases
where a partial beam scanning is done are also possible, but we keep the formulation to be that
of a full-beam scanning in the chapter since it represents the general case.)

Set ri ≜ rCSP
i and ti ≜ tCSP

i for notation convenience. With that, the signals collected by a
receiving CSP, say CSP j with 1 ≤ j ≤ J , after another CSP, say CSP i with 1 ≤ i ≤ J and
i ̸= j, scanned its beam, can be written as

Yi,j = riF
T
i H

i,j
p Bjtj +Ni,j, (4.7)

where Ni,j is a matrix modelling receive noise and its entries are independent and identically
distributed zero-mean circularly symmetric complex-valued Gaussian variables with variance σ2,
and the symmetric matrix H i,j

p denotes the reciprocal propagation channel from all antenna el-
ements of CSP j to all antenna elements of CSP i. The matrix Bj = [bj (1) . . . bj(Nb)] denotes
the transmit codebook matrix at CSP j and contains all possible Nb beams of the transmit beam-
former. Similarly, Fi = [fi (1) . . .fi(Nb)] denotes the receive codebook matrix which contains
all possible beams of the receive beamformer. (Note the relation between W in (4.6), and the
codebook matrices in (4.7), e.g. Bj . To explain, the j-th row of W consists of the beam being
used by the j-th CSP for downlink data transmission, which is a given column of the transmit grid-
of-beams matrix Bj). The matrix Yi,j contains the measurements resulting from all combinations
of beam pairs.

Based on (4.7), the vectorized signal model is

vec (Yi,j) = vec
(
riF

T
i H

i,j
p Bjtj

)
+ vec ( Ni,j)

= vec
(
rirjF

T
i H

i,j
p Bj

tj
rj

)
+ vec (Ni,j)

= rirjvec
(
F T

i H
i,j
p Bj

)
cj + vec (Ni,j)

= rirj

F
T
i H

i,j
p 0 0

0
. . . 0

0 0 F T
i H

i,j
p

 vec (Bj) cj + vec (Ni,j) , (4.8)
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where the operator vec(·) stacks the columns of its matrix input. Each CSP uses the same beams
for transmission and reception, e.g., Bi = Fi and Bj = Fj , this assumption is motivated later on.
We also write the reciprocal propagation matrix as Hp ≜ H i,j

p =
(
Hj,i

p

)T for simplicity. With that,
it follows that the double-directional signal model between CSP i and CSP j, can be written as

Ȳ ∗
i,j =

[
vec (Yi,j)
vec

(
Y T

j,i

)]

=



rirj

F
T
i H

i,j
p 0 0

0
. . . 0

0 0 F T
i H

i,j
p

 vec (Bj) cj

rjri

F
T
i H i,j

p 0 0

0
. . . 0

0 0 F T
i H i,j

p

 vec (Bj) ci


+

[
vec (Ni,j)
vec

(
NT

j,i

)]

=

[
ei,j 0
0 ei,j

] [
cj
ci

]
+

[
vec ( Ni,j)
vec

(
NT

j,i

)]
=

[
ei,j 0
0 ei,j

] [
cj
ci

]
+ N̄i,j (4.9)

Based on the bi-directional model obtained in (4.9), reciprocity calibration of a multiple CSPs can
be carried out.

We note that the transmit and receive codebooks, namely Bj and Fi, may be tall matrices (i.e.
with more rows than columns) or square matrices (e.g. DFT matrices). The exact setting of such
codebooks is not needed to be known by the system to perform calibration. The only assumption
required is that the same CSP beams are used for transmission and reception (i.e., Bi = Fi),
otherwise ei,j ̸= ej,i and (4.9) may not be identifiable.

Maximum-Likelihood Calibration of a 3-CSP Network

Next, we exemplify the case where J = 3 CSPs are being jointly calibrated for reciprocity – the
generality of the approach scales for any number of CSPs. With that, the joint bi-directional
signal model may be written as

Ȳ = Ceq

e1,2

e1,3

e2,3

 + N̄ (4.10)

or

¯̄Y = Eeqc+
¯̄N , (4.11)

where Ȳ =
[
Ȳ T

1,2 Ȳ
T
1,3 Ȳ

T
2,3

]T, N̄ =
[
N̄T

1,2 N̄
T
1,3 N̄

T
2,3

]T, c = [c1 c2 c3]
T, and

Eeq =


e1,2 0 0
e1,3 0 0
0
0
0
0

e1,2

e2,3

0
0

0
0

e1,3

e2,3

 , (4.12)
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and

Ceq =


diag (c1, . . . c1) 0 0
diag (c2, . . . c2) 0 0

0
0
0
0

diag (c1, . . . c1)
diag (c3, . . . c3)

0
0

0
0

diag (c2, . . . c2)
diag (c3, . . . c3)

 . (4.13)

Note that ¯̄Y and ¯̄N are matrices with the same dimensions of Ȳ and N̄ , but with elements
re-ordered. The re-ordering can be inferred from the structure of Eeq and c in (4.11).

To estimate the calibration coefficients c, a maximum likelihood cost function can be written. From
an optimization point of view, it is equivalent to minimizing the squared residuals, namely,

JML(Eeq, c) =
wwȲ −Eeqc

ww2
, (4.14)

where the operator ∥A∥2 denotes the squared Frobenius norm of matrix A.

An Alternating Optimization Procedure

Our task now is to find the values of the calibration coefficients c and the nuisance matrix Eeq

that minimize JML(Eeq, c). Note that there is no obvious closed-form solution for Eeq and c since
the cost function is not quadratic on the joint parameter space. However, by fixing one part of the
parameter space, e.g. Eeq, a closed-form solution exists for the remaining part of the parameter
space, e.g., c, and it can trivially be obtained via

ĉ = E†
eqȲ , (4.15)

where A† denotes the Moore–Penrose inverse of A. With that, one can use alternative optimiza-
tion techniques to find suitable estimates for Eeq and c. More specifically, letting the estimates
obtained at the n-th iteration of said alternating procedure be given by ĉ(n) and Ê

(n)
eq , the estimates

at iteration n+ 1 may be obtained via the 2 consecutive steps

ĉ(n+1) =
(
Ê

(n)
eq

)†
Ȳ , (4.16)

and

Ê
(n+1)
eq = Ĉ

(n+1)
eq Ȳ . (4.17)

where Ĉ
(n+1)
eq consist of the matrix Ceq with the estimates ĉ(n+1) in its entries.

Convergence of the Optimization Procedure

The main aspect to highlight is that the optimization procedure described above is guaranteed to
converge either to the global optimum, a local optimum or a saddle point of JML(Eeq, c). A simple
proof follows.

Prior to iteration n+1, inserting the current estimates ĉ(n) and Ê
(n)
eq in the cost function, will yield

an associated cost of, say, C(n, n). Mathematically,

JML

(
Ê

(n)
eq , ĉ

(n)
)
= C(n, n). (4.18)
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Note that, in general, ĉ(n) is not optimized for the current value of Ê(n)
eq . This is true if, e.g., both

ĉ(n) and Ê
(n)
eq are randomly initialized which can be the case when n = 0, or if ĉ(n) and Ê

(n)
eq are

obtained via iteration n the proposed alternating optimization procedure.

The first step of iteration n + 1 of the proposed procedure, optimizes ĉ while having Êeq fixed,
namely, fixed to its current value is Ê

(n)
eq . Since this optimization exists in closed form, we are

guaranteed to find the optimum (i.e. minimum) value of ĉ for that particular Ê(n)
eq . More specifically,

JML

(
Ê

(n)
eq , ĉ

(n+1)
)
≤ JML

(
Ê

(n)
eq , ĉ

)
, ∀ ĉ , (4.19)

and thus the associated cost function value does not increase compared to (4.14). With that, we
have

JML

(
Ê

(n)
eq , ĉ

(n)
)
≥ JML

(
Ê

(n)
eq , ĉ

(n+1)
)
. (4.20)

The similar holds true when optimizing Êeq based on ĉ(n+1). Namely, since the optimization of Êeq

is available in closed-form, we are guaranteed to find the optimum value of Êeq for that particular
ĉ(n+1). With that we have

JML

(
Ê

(n)
eq , ĉ

(n+1)
)
≥ JML

(
Ê

(n+1)
eq , ĉ(n+1)

)
(4.21)

By comparing (4.18) with (4.21), we see that each iteration of the alternating optimization method
either decreases or maintains the associated value in the cost function. This guarantees the
convergence of the method, either to the global optimum, a local optimum or a saddle point of
JML(Eeq, c).

4.1.3 Numerical Results

Here we show some simulation results that motivate the use of the proposed ML estimator to
process distributed massive MIMOs measurements sets of the nature of (4.7). We simulate the
case of jointly calibrating three CSPs, each CSP having 32 antennas and 3 possible DFT beams.
Moreover, the transmit and receive beamforming codebooks are DFT matrices of size 32 × 32
and all CSPs share such codebooks for transmission and reception.

We define gains of the transmitters chains, namely t1, t2, and t3, and the gains of the receivers
chains, namely r1, r2, and r3, as i.i.d. (unit-length) phasors with uniform phase distribution across
[0, 2π[. The non-diagonal entries of the symmetric propagation channel matrix H i,j

p ∀ i, j, are
i.i.d. zero-mean unit-variance circularly symmetric complex-valued Gaussian variables, and the
non-diagonal entries of the additive receiver noise matrices, Ni,j and Nj,i, are i.i.d. zero-mean
circularly symmetric complex-valued Gaussian variables with variance σ2. (The diagonal entries
are undefined as previously mentioned.) The calibration SNR is here defined as σ−2. We use the
ML-based alternating algorithm proposed above to post process the measurements and estimate
the calibration matrix C = diag {c}, where c = [c1, . . . cM ]T.

Since the main application for the calibration weights is in the context of (reciprocity-based) beam-
forming (and beamforming is only concerned with complex amplitude differences between an-
tenna elements, and not with their absolute values), any scaled version of a calibration vector is
equally good in terms of beamforming performance, i.e., the vector estimate ĉ is as good as the
vector αĉ, for α being any non-zero complex number. Thus, one calibration performance error
metric that takes this into account is one minus the squared cosine of the principal angle between
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Figure 4.1: Alignment Error metric versus SNR for the case of calibrating using 3 distinct mea-
surements sets.

the subspace spanned by the true coefficient vector c and the subspace spanned by the vector
estimate ĉ. For example, when the estimate is perfect and the subspace of c is perfectly aligned
with the subspace of ĉ, the error metric equals to zero. This error metric can be written as

Average Alignment Error = E

[
1−

cHĉ2

cHcĉHĉ

]
, (4.22)

where the expectation operator E[·] acts jointly over the random sources of the signal model.

Figure 4.1 depicts the Average Alignment Error metric versus SNR for the case of calibrating
with three distinct measurements sets. Two of the three measurement sets use only one double-
directional measurement between each pair of CSPs in order to compute the calibration co-
efficients. In this case, state-of-the-art calibration schemes originally designed for fully-digital
systems, can be used straightforwardly to post-process the measurement sets. The third mea-
surement set consists of the case of performing a full-beam sweep for each CSP pair, and post-
processing the resulting entire measurement with the proposed algorithm (since state-of-the-art
methods cannot be used here).

The blue curve represents the case of using only one double directional measurement between
each pair of CSPs, where each beamformer pair (i.e. the transmit and receive beams) is picked
at random with equal probability among all possible beamforming pairs. The red curve represents
the case of using one double-directional measurement between each pair of CSPs, where each
measured is associated with the beamformer pair that maximizes the energy of the effective
channel gain. Finally, the black curve represents the case of combining the measurements from
all beam pair combinations, according to the estimator proposed above.

The gap between the blue and red curves is justified by the strongest measurement of the set
always yielding equal for greater calibration SNR compared to using an arbitrary beam pair. Fi-
nally, the gap between the red and black curves, shows how measurements associated with
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beam pairs, other than the beam pair yielding the highest link budget, contribute for enhancing
the calibration quality. Thus, if measurements other than the measurements associated with the
strongest beam pair are available, they should be also post-processed and used for calibration
purposes. This motivates the usage of neat signal processing methods, as the proposed al-
gorithm, which is able to post-process multi-beam measurements for calibration – a feature not
existing in state-of-the-art massive MIMOs calibration literature.

4.2 Graph-based Subarray Fusion for Channel Estimation

Due to the large aperture of RWs and near-field propagation, the RW channel shows non-
stationary spatial properties which have been clearly shown in the previous study [2, 25, 26] with
real measurements. In this section, we investigate the potential of using subarray data fusion for
RW channel estimation. We apply a belief propagation (BP)-based algorithm [19] to sequentially
detect and estimate SMC parameters based on radio signals at each subarray. The joint detec-
tion and estimation problem is formulated as a Bayesian model and then represented by a factor
graph enabling the use of BP for efficient computation of the marginal posterior distributions. At
each subarray, a snapshot-based parametric channel estimator provides parameter estimates of
a set of SMCs, e.g., distances, angles and SNRs, which are used as noisy measurements by
the BP-based algorithm. It performs joint probabilistic data association, estimation of the time-
varying SMC parameters, and the mean number of false alarm measurements by means of the
sum-product algorithm rules. The algorithm further exploits amplitude information to improve the
detection of “weak” SMCs with very low SNRs.

As a preliminary study, fully synthetic measurements were used without involving the snapshot-
based channel estimator. The simulation environment is shown in Fig.4.2, where the RW is seg-
mented into 75 subarrays with each consisting of 4×4 or 8×8 antenna elements. For simplicity,
we consider only the LOS propagation path and four 1st order reflected SMCs with varying visibil-
ity across subarrays and overlapping in the delay and angular subspace. In each simulation run,
SMC-oriented measurements of each subarray were generated by adding Gaussian noises to the
true SMC parameters, where the noise variances were state-dependent and determined based
on the Fisher information given the signal bandwidth of 100MHz and SNR ∈ {18, 30}dB. Note
that frequency sample gain and array gain are included in the formulation of SNRs. In addition,
false alarm measurements were also generated. In total, we performed 50 simulation runs for
each SNR and each subarray dimension, respectively. The BP-based algorithm was performed
according to the order of the subarray indices shown in Fig. 4.2b.

Fig. 4.3 shows the results of an exemplary simulation run for a challenging setup with SNR =
18dB and subarray dimension 4 × 4. It is seen that the algorithm excellently copes with inter-
secting MPCs and exhibits high detection and estimation accuracy for medium and high SNR
SMCs. The “weakest” SMC that is mostly below the false alarm SNR level is also stably detected
shortly after the beginning. Fig. 4.4 further presents the MOSPA errors1 of SMC parameters, the
averaged number of detected SMCs. Given high SNR value, the number of SMCs is accurately
estimated. For distance, AOA and component SNR, the MOSPA errors are mostly below 0.15m,
2 degree and −35 dB, respectively. Given SNR = 18 dB, the MOSPA errors remain on the mean
posterior error bound levels mostly, despite a few peaks due to the underestimated number of

1The performance is measured using the optimal subpattern assignment (OSPA) metric [27], which can efficiently
capture the estimation errors of the model order and MPC states when comparing with the true MPC states at each
time or step. The mean OSPA (MOSPA) errors are obtained at each time by averaging over all simulation runs.
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Figure 4.2: (a) 3D model demonstrating the simulation environment. The 75 subarrays of the RW
are denoted with markers highlighted with different colors. The red square marker represents the
static UE. (b) Subarrays are indexed in top-to-bottom “zigzag” order.

SMCs and overlap between SMC.

In conclusion, the BP-based algorithm is capable of capturing the non-stationary properties of
the RW channel by processing subarray radio signals sequentially. In addition, small subarrays
allow for efficient implementation of the considered algorithms and allows to efficiently distribute
computation resources. Having the capability of fusing the measurements of the CSPs on a
subarray basis enables an efficient use of resources, by performing separate processing using
super-resolution channel estimation algorithms. The obtained fused estimates can the be used in
positioning applications, for example in the EKF-based approach outlined in the following section,
Section 4.3. In addition, the component estimates can be used as input for
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Figure 4.3: Results for fully synthetic measurements with the BP-based algorithm given SNR =
18dB and subarray dimension 4×4. Estimates of (a) distance, (b) component SNR, (c) azimuth
AOA and (d) elevation AOA. The black solid lines denote the true SMC parameters. The gray
dots denote the false alarm measurements. The estimates of different SMCs are denoted with
densely-dashed lines with square markers in different colors.
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Figure 4.4: Results for fully synthetic measurements with the proposed algorithm given SNR =
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(a) distances, (b) azimuth AOAs, (c) elevation AOAs, (d) input component SNRs, and (e) the
averaged number of detected SMCs.
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4.3 EKF-based Position Tracking and Clock-synchronization

This section investigates the application of [10] to the RW infrastructure as baseline algorithm for
joint synchronization and positioning, which can be applied either to tracking of a dynamic UE
or to measurement fusion of a static UE. For positioning, we exploit the LOS path in a similar
fashion as in the analysis of the fundamental performance limits in Chapter 3, relying on a LOS-
only model as simplest baseline case. While this will be a limitation that needs to be addressed
during algorithm validation with measurement data, either a simple pre-selection step from mul-
tiple measurements obtained per CSP (subarray) can be performed, e.g., using the algorithms
obtained with the graph-based algorithm discussed in Section 4.2. Nonetheless, the extension to
a general multipath model will be addressed in the final stage of the project.

4.3.1 UE Motion Model

For the motion of the UE, we assume a standard linear state-space model. The UE state at time
step k + 1 depends linearly on the previous state according to

xk+1 = Axk +wk (4.23)

yk = g(xk) + nk, (4.24)

with the state xk ∈ RN , with A ∈ RN×N denoting the state transition matrix. The measurement
yk ∈ RP contains measurements at time step k, with g(·) ∈ RP , denoting the measurement
function depending on the current state. In addition, white process noise wk ∈ RN ∼ N (0,W )
and measurement noise nk ∈ RP ∼ N (0,V ) are introduced. P denotes the number of available
measurements.

Assuming the UE moves with a constant velocity for simplicity, the state vector xk ∈ R6 consists
of the current position pk ∈ R3 and velocity vk ∈ R3 according to

xk = [pk,x, pk,y, pk,z, vk,x, vk,y, vk,z]
T = [pT

k ,v
T
k ]

T. (4.25)

The corresponding state transition matrix is then found as

A =

[
I3×3 TdI3×3

03×3 I3×3

]
, (4.26)

where 0N×M denotes a (N ×M) zero matrix and IN×M is a (N ×M) identity matrix, and Td

denotes the time between consecutive time steps. The measurements are performed using an-
tenna arrays which provide distance and angle measurements [28, 29], the measurement vector
at time step k becomes

yk =

 atan(pk,y − ay, pk,x − ax) + φ̄az

arccos
(

pk,z−az√
(pk,x−ax)2+(pk,y−py)2+(pk,z−az)2

)
+ ϑ̄el

∥pk − a∥

 =

φk

ϑk

rk

 = g(xk). (4.27)

with the array position2 defined as a = [ax, ay, az]
T and rk denoting the range relative to the array,

and φk the azimuth and ϑk the elevation angles. To apply the extended Kalman filter (EKF) [30],

2To improve the readability the notation of the positions of CSP and UE was adapted slightly from the one used
in Section 2.1.
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the nonlinear system is linearized using a Taylor approximation, with the resulting (linearized)
measurement matrix, converting the agent state to distance and angle measurements, found as

Hmeas
k =

∂g

∂x

∣∣
x̃k

=


− pk,y

p2k,x+p2k,y

pk,x
p2k,x+p2k,y

0
...

− pk,xpk,z√
p2k,x+p2k,y(p

2
k,x+p2k,y+p2k,z)

− pk,ypk,z√
p2k,x+p2k,y(p

2
k,x+p2k,y+p2k,z)

√
p2k,x+p2k,y

(p2k,x+p2k,y+p2k,z)
03×3

pk,x√
p2k,x+p2k,y+p2k,z

pk,y√
p2x+p2k,y+p2z

pk,z√
p2k,x+p2k,y+p2z

...

 .
(4.28)

4.3.2 Clock Offset Model

As synchronization plays a key role in the distributed RW infrastructure, we include clock offset
between subarrays as described in Chapter 2, which is similar to the model used in [10]. The
corresponding unkown delay from each CSP to the agent is introduced into the state space
model. The clock offset ϵk ∈ R at time k is modeled as an autoregressive process [29] as used
in (2.25)

ϵk+1 = ϵk + δkTd, (4.29)

where the clock drift δk ∈ R is modeled as

δk+1 = βδk + ηk (4.30)

with |β| ≤ 1 and a white Gaussian process noise with zero-mean ηk ∼ N (0, ση) ∈ R. In a more
compact form, this becomes

θclk,k =

[
ϵk
δk

]
=

[
1 Ts

0 β

] [
ϵk−1

δk−1

]
. (4.31)

For simplicity, we assume a constant clock drift with β = 1. By including the clock offset ϵk in the
measurement model one obtains

yk = g̃(xk,θclk,k) =

 atan(pk,y − ay, pk,x − ax) + φ̄az

arccos
(

pk,z−az√
(pk,x−ax)2+(pk,y−py)2+(pk,z−az)2

)
+ ϑ̄el

∥pk − a∥+ ϵk

 =

 φk

ϑk

rk + ϵk

 (4.32)

from which the linearized measurement matrix is obtained according to

H̃meas
k =

 | | 0 0
Hmeas

k 03×3 0 0
| | 1 0

 . (4.33)

4.3.3 Measurement Configurations

This section describes two types of measurement configurations for which the positioning per-
formance is analyzed. These configurations are full measurements consisting of AOA and time-
of-arrival (TOA) measurements, and AOA-only measurements, where no range measurements,
i.e., distance/delay estimates, are available. This allows to investigate performance in challenging
scenarios, especially at a lower system bandwidth or when the clock offset is too large, resulting
in the distance measurements being inaccurate to the point of being considered outliers, or being
obtained by a channel estimation algorithm that only provides angle measurements.
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TOA-AOA measurements Assuming all measurements to be available, one can simply stack
the corresponding measurements per subarray resulting in a measurement vector y̆k of dimen-
sions (3Q× 1) with Q being the number of subarrays.

y̆k = [y1,k, . . . ,yQ,k]
T ∈ R3Q. (4.34)

AOA-only measurements When only angular measurements are used, the range measure-
ments in the measurement vector are not considered for ĝ(x) and completely removed. The
resulting measurement vector becomes

y̌k = [φ1,k, ϑ1,k, . . . , φQ,k, ϑQ,k]
T ∈ R2Q. (4.35)

4.3.4 Extended Kalman Filter (EKF)

The Kalman filter is the solution to the optimal state estimation problem given noisy measurement
data from a state-space system as described in Section 4.3.1 [15, 30]. Based on the state
and measurement models, the optimal Kalman gain Kk is computed to minimize the estimation
covariance of the error ek = xk − x̂+

k at each sampling time step k ∈ {0, 1, . . . }. Based on an
a-priori state estimate x̂−

k+1 one commonly obtains a state prediction

x̂−
k+1 = Ax+

k (4.36)

which is then updated to obtain a-posteriori estimate x̂+
k+1 by fusing the measurements via the

Kalman gain. To this end
P−

k+1 = AP+
k AT +W ∈ RN×N (4.37)

where P−
k+1 is the predicted state covariance matrix. With the current measurement yk+1 avail-

able, the posterior state estimate is obtained as

x̂+
k+1 = x̂−

k+1 +Kk+1(yk+1 − (Hmeas
k )Tx̂−

k+1), (4.38)

where the Kalman gain defined as

Kk+1 = P−
k+1(H

meas
k )T(Hmeas

k P−
k+1(H

meas
k )T + V )−1 (4.39)

and with V ∈ RN×N representing the measurement noise covariance matrix. The necessary
steps of the EKF are summarized in Algorithm 1.

4.3.5 Simulation Scenario

In this section, the simulation environment used to evaluate the performance of the EKF algo-
rithm is described, including various scenarios for comparison. First, the simulation setup and
parameters are introduced, followed by a statistical evaluation of different models and their per-
formance metrics. By means of Monte Carlo simulations, the different measurement scenarios
are compared. The EKF-based algorithm is applied to both measurement cases of TOA-AOA
measurements as well as AOA-only measurements. In addition, the performance of a single
CSP is compared to two CSPs with and without clock offset.
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Algorithm 1 The extended Kalman filter (EKF) [15, 30]

x̂+
0 ← init.

P+
0 ← init.

for k in K do
P−

k ← AP+
k−1A

T +W
x̂−
k ← Axk−1

Hk ← ∂gk
∂x
|x̂−

k

Kk ← P−
k (Hmeas

k )T(Hmeas
k P−

k (Hmeas
k )T + V )−1

x̂+
k ← x̂−

k +Kk[yk − g(x̂−
k )]

P+
k ← (I−KkH

meas
k )P−

k

end for

Settings

In the simulation environment, two physically large antenna arrays, with (112 × 75) antennas
each, are generated and split up into (15 × 15) sub-arrays, arranged regularly in a grid with a
spacing of λ/2 = 2.158 cm for a carrier frequency of fc = 6 GHz. Since the second wall-mounted
array is added to improve the performance of the algorithm, the two arrays are orthogonal to
each other, for a maximal improvement over the singular array case due to the reduction in the
angular uncertainty. To generate noisy position estimates, the trajectory positions of the device
to be tracked are corrupted by additive Gaussian noise. Fig. 4.5 depicts the used measurement
setup and trajectory positions. To simulate a measurement setup that uses a small bandwidth
value, it is possible to exclude the range measurements to also emulate scenarios with a lower
available bandwidth as well as only use one of the two antenna arrays.

The parameters that are used for the simulations are introduced are summarized below and
were chosen based on the analysis of the performance limits in terms of the CRLB performed in
Chapter 3.

• σAOA ∈ {0.1◦, 1◦, 5◦} – standard deviation of the Gaussian noise of both angular measure-
ments (φk and ϑk)

• σTOA ∈ {0m, 0.05m, 0.5m} – standard deviation of the Gaussian noise of the range mea-
surements (rk)

• uclk ∈ {0m, 0.2m} – range of the uniformly distributed clock offsets per sub-array (i.e. they
are bounded by |uclk|)

• β ∈ {0m/s, 0.001m/s} – amount of clock skew

If not stated otherwise, the standard settings used are σAOA = 1◦, σTOA = 0.05m, |uclk| = 0.2m,
β = 0.001m/s. Additionally, the state covariance parameters are chosen as

Ux = diag ([0.1, 0.1, 0.1, 0.05, 0.05, 0.05]) , (4.40)

where the operator diag(. . . ) denotes a diagonal matrix with the elements provided in the vector.
For the clock offsets we use

Uθclk = diag ([0.1, 0.05]) (4.41)

which are then combined into
U = blkdiag(Ux,Uθclk) (4.42)
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Figure 4.5: Setup with the trajectory of the agent and antenna array positions used in simulations.

Table 4.1: Color scheme used in the result plots.

color abbr. description
black TOA-AOA Predictions made using noisy data without clock offset errors

with range and angular measurements available, representing
the baseline case.

orange AOA Predictions made using noisy data (measurement noise) with
only angular measurements available.

red TOA-AOA w/o clk Predictions made using noisy data (clock offset + measurement
noise) with range and angular measurements available.

green TOA-AOA clk Predictions made using noisy data (clock offset + measurement
noise) with range and angle measurements available where the
clock offset has been compensated for in the model.

representing a block diagonal matrix. The measurement covariance matrix is set to

R = diag

([ 5π
180

,
5π

180
, 0.2

])
. (4.43)

The state covariance matrix P is initialized as an identity matrix, i.e. P+
0 = I and the initial state

x+
0 is set to the true location of the UE.

The performance metric we use the root-mean-square error (RMSE) over a number of iterations
R, which is defined as

ēpos,k =

√√√√ 1

R

R∑
i=1

∥ptrue
k − p̂

(i)
k ∥2. (4.44)

with the p̂
(i)
k denoting the position estimate from the estimated state x̂k at time step k for iteration

i = 1, . . . , R. In the Monte Carlo analysis, the simulations are performed for R = 500 realizations.

4.3.6 Simulation Results

This section presents the simulation results of the EKF-based algorithm for different parameter
settings, comparing the performance of a single CSP (J = 1) and two CSPs (J = 2), and the
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(b) RMSE over trajectory positions.

Figure 4.6: Comparison of error metrics for different measurement setups (only angular measure-
ments versus angular and range measurements as well as one used array versus two CSPs).

error behavior along the trajectory positions. We compare the AOA-only case with the AOA-TOA
case. For simulations with only one array, array one is used (see Fig. 4.5). The color scheme
for the different configurations as used in the figures is described in Table 4.1. Simulation results
where only one array has been used are shown as dashed lines.

Baseline Case

As a baseline case, the algorithm is evaluated without clock offset, allowign to analyze the opti-
mum performance of the scenario. Fig. 4.6 compares the use of one versus two CSPs for AOA-
only measurements (orange) and AOA-TOA measurements (black) in terms of the cumulative
distribution functions (CDFs) of each configuration. The performance improvement by exploiting
the range measurements is visible in the CDF which approaches 1 for lower RMSE values. When
using both CSPs with range and angle measurements available (black solid), the CDF reaches a
value of 0.9 at 0.17m RMSE, at 0.21m when using only the angular component, at 0.22m when
using only a single CSP with range measurements and at 0.47m for a single CSP without range
measurements.

Figure 4.6b shows the RMSE along the trajectory, and the mean distance to the CSPs. Impor-
tantly the position error increases when the agent moves farther away from the array. This is due
to the fact that the AOA information regarding the UE position decreases with distance as shown
in Chapter 3. The configuration using both range and angular measurements performs best,
while the using just the AOA measurement result in a larger RMSE. Abrupt changes in directions
are not well represented by the motion model, which is visible as spikes in the RMSE curves at
these trajectory positions (see Fig. 4.6b).

Constant Clock Offset

When a time invariant clock offset between subarrays of the CSPs is included, the performance of
the tracking algorithm suffers heavily and the RMSE increases when using both angle and range
measurements, while the performance is not affected when using only angular measurements.
This can be seen in Figure 4.7a showing the CDF of the RMSE and in Figure 4.7b showing
mean RMSE over all trajectory positions. It is however possible to improve the results by tracking
the clock offset in the system state alongside the UE position. Fig. 4.7b shows that by tracking
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Figure 4.7: Comparison of error metrics for different measurement setups where a clock offset
has been introduced (only angular measurements versus angular and range measurements as
well as one used array versus two CSPs).
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Figure 4.8: Offsets for the first 5 sub-arrays compared with the corresponding tracked values.

the offset (green) a higher accuracy and robustness can be achieved compared to angle-only
measurements (orange) or when ignoring the clock offset (red).

Time Varying Clock Offset

Adding the clock skew as state variable allows to account for time varying clock offset, e.g.,
tracking of slowly drifting clocks. Fig. 4.8 shows tracking results for the two used clock offset
models, showing the tracking performance for a constant clock in Fig. 4.8a and the time varying
clock in Fig. 4.8b. Due to the high range accuracy, it is however still possible to track the clock
offset of each CSPs subarray (see Fig. 4.8 showing one exemplary realization). When included
in the EKF state, tracking of the clock offset allows for higher accuracy, as shown by the CDF in
Fig. 4.9a and the mean error over the trajectory in Fig. 4.9b, where the increasing clock offset
results in an increasing RMSE in the uncompensated case (red). The compensation for the
clock offset results in improved robustness of the algorithm using range and angle measurments
(green) when compared to the case where only angular measurements are used (orange).
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Figure 4.9: Comparison of error metrics for different measurement setups where an additional
clock offset with skew is introduced (only angular measurements versus angular and range mea-
surements as well as one CSP versus two CSPs).

Simulation Parameter Comparison

To compare all different configurations of the simulations, the mean RMSE values for all runs are
compared as error bar plots in Fig. 4.10. The top row shows results for high range and high angle
accuracy, the middle row for medium range and high angle and the bottom row for low range and
high angle accuracy.

While the performance with high range and angle accuracy is very similar for the case without
clock offset and clock drift, simulating the clock offset shows the drastic effect when not including
it in the tracked state vector (see NC in Figures 4.10a to 4.10c). In addition, the performance
of the algorithm with clock offset compensation is close to the baseline approach (BL) and the
angle-only approach (AO), see WC in Figures 4.10a to 4.10c. When decreasing the ranging
accuracy, also the performance of the clock offset estimation degrades, while still showing similar
performance as for the angle-only configuration, see in Figures 4.10d to 4.10e. For the lowest
range accuracy of σTOA = 0.5m, the large range error overshadows the effect of the clock drift as
well as of the clock offset (see Figures 4.10g to 4.10i).

4.3.7 Conclusion and Discussion

Considering the clock offset in the tracking of a mobile UE allows to apply the EKF-based algo-
rithm in a realistic scenario, which can be extended to cope with slowly time-varying clock offset
values [28]. The simulations have shown that the tracking algorithm heavily suffered from the ef-
fects of random time delays between the subarrays of CSPs, which can be overcome to achieve
a more robust algorithm by tracking of the offset. Especially when the measurement resolution
increases, e.g., due to higher bandwidth values, it becomes essential to compensate for syn-
chronization issues to achieve a high performance. Another insight is that when the errors of the
range measurements increase, tracking of the clock offset does not improve the accuracy above
that of the angle-only positioning setup, as the estimation of the additional parameter introduces
an additional cost.
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Figure 4.10: Comparison between the RMSE obtained for high, medium and low range and
angle accuracy, showing the simulation results for different algorithm scenarios denoted as no
correction (NC), angle-only (AO), with correction (WC), baseline case (BL).
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Chapter 5

Joint Positioning, Learning and Sensing

This chapter introduces an algorithm capable of environment learning or sensing as well as po-
sitioning in a MIMO scenario, e.g., exploiting the possibility of using signals exchanged between
CSPs, or between CSPs and UEs at known positions, or, in the most straightforward scenario in
the context of RW, between a CSP and a single mobile device. The latter case can be expected
to suffer from a reduced resolution. To this end, the mirror source model introduced in D1.2 [2],
used to model multipath propagation, is exploited to localize reflecting surfaces. These reflecting
surfaces can consequently be used to compute or calibrate the image source model from D1.2
[2]. Such a model is necessary to enable development of algorithms that rely on spatial consis-
tency to learn specific environment features. In addition to the algorithmic approach, application
examples fitting the context of the RW infrastructure are given.

5.1 MIMO Radar-based Environment Sensing

In the following, we describe a procedure to infer a geometric environment model from a dis-
tributed radio infrastructure based on a simple radar imaging scheme. The procedure pre-
sented below is published in [31] with the code and data accompanying the publication available
in [32, 33].

5.1.1 Channel Model

We use a geometry-based channel model for multiple-input single-output (MISO) systems, model-
ing the channel vector h(p, f) ∈ CM×1 in the frequency domain, for a frequency f , and a specific
UE device position p = [px, py, pz]

T. To highlight the direct dependency on the UE position, we
briefly revisit the necessary modeling concepts from Chapter 2 in this section.

The mth element of the channel vector [h(p, f)]m represents the channel from transmit antenna
m ∈ {1 . . . M} to the UE device, equipped with a single antenna. The channel vector is modeled
as the superposition of the channel vectors hk(p, f) of K SMCs

h(p, f) =
K∑
k=1

hk(p, f) . (5.1)

Each SMC k ∈ {1 . . . K} (including the LOS with k = 1) is modeled by means of an image or
mirror source, obtained by mirroring all M transmit antennas across the surface and computing
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Figure 5.1: A three-dimensional (3D) model of the measurement scenario: Bistatic synchroniza-
tion anchor (SA) measurements are conducted using one λ

2
-ULA mounted on a wall and a λ

4
-URA

in the horizontal plane at fc = 3.79GHz. Metal walls have been placed in the environment to in-
troduce controlled specular reflections.

the corresponding distances from the position of the kth mirror source at position pk to the energy
neutral (EN) device position p. For simplicity, we only model first-order specular reflections. The
computation of the mirror sources is described in the appendix of [34]. The elements of each
SMC channel vector are accordingly modeled as [35]

[hk(p, f)]m =
√
Gt,m

√
Gr

λ

4π∥rk,m∥
e−j 2π

λ
∥rk,m∥ (5.2)

which represents the Friis transmission equation formulated for power wave amplitudes. Gt,m(θ, φ)
and Gr(θ, φ) are the gain patterns of the respective antennas in azimuth and elevation direction
(θ, φ) of an incident wave in local spherical antenna coordinates, and rk,m = p − pk,m is the
vector from transmit antenna m of mirror source k at pk,m to the EN device position p.

When transmitting with a total power Pt, the EN device receives complex baseband amplitude,
i.e., a phasor,

α(p, f,w) = hT(p, f)w
√
Pt (5.3)

where w ∈ CM×1 is a unit-vector of beamforming weights, i.e., ∥w∥ = 1. The efficiency of power
transmission is represented by the path gain

PG(p, f,w) =
Pr

Pt

=
|α(p, f,w)|2

Pt

(5.4)

defined through the ratio of received power Pr to transmit power. We assume Pt = 1W for the
remainder of this section.
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5.1.2 Radar Imaging

We employ the radar imaging scheme proposed in [36], computing a reflectivity map

I(p) =

Nf∑
i=1

wT
r (p, fi)H(fi)wt(p, fi) (5.5)

for every point p in a specified two-dimensional (2D) spatial window of interest aligned with the
height of the ULA. An important aspect is the straightforward adaption of (5.5) to a MIMO setup
(i.e., using multiple CSPs or multiple UEs) or SIMO scenarios (i.e., using a single CSP and a
single UE), simply by choosing a suitable dimension of the transmit (or receive) beamforming
weights wr(p, fi) or wt(p, fi).

The weight vectors for position-based beamforming wr(p, fi) and wt(p, fi), for the receiving ULA
and the transmitting URA, respectively, are computed by applying maximum ratio transmission
(MRT), i.e.,

wr(p, f) =
h∗

r (p, f)

∥hr(p, f)∥
and wt(p, f) =

h∗
t (p, f)

∥ht(p, f)∥
(5.6)

where the channel vectors hr(p, f) ∈ CM and ht(p, f) ∈ CN are given by (5.2), assuming
isotropic gain patterns for simplicity and K = 1, i.e., LOS beamforming only. The definition
in (5.2) inherently performs spherical wavefront beamforming (cf., [37, 38, 34]). Fig. 5.2 shows
the imaging results we obtain by evaluating (5.5) for a grid of positions p in the measurement
scenario (see Fig. 5.1).

Note that |I(p)|2 is a measure of the power received by the ULA from position p when simulta-
neously beamforming to the position p with the URA, and coherently summing over the whole
frequency band of 3-10 GHz. There is a peak visible in the LOS path between the two arrays that
exhibits smooth edges. The power decreases in the vicinity of the URA because it is vertically lo-
cated 10 cm below the evaluated window. The radar image shows sharp edges at the locations of
the metal walls (i.e., the specularly reflecting surfaces) and a gradually decaying power “behind”
the walls.

5.1.3 Edge Detection and Surface Estimation

The sharp edges in the radar image are well-suited for an edge detection algorithm. We run
the Canny edge detector [39, Sec. 2.4] on the radar image and subsequently employ the Hough
transform [39, p. 342 ff.] to transform the image into the Hough space. The peaks of the resulting
Hough image are used to find the location, orientation, and extent of the detected edges. Both
are well-established methods in image processing. We use the MATLAB® implementations of the
Canny edge detector and Hough transform, with the chosen parameters given in [32]. Depending
on the system setup, other methods may provide better estimates. The detected lines (dashed)
are indicated in Fig. 5.2 alongside the resulting mirror sources (dotted). It is clearly visible that
the main portion of power is concentrated at the intersection of the path between mirror sources
of the ULA and the URA and thus the radar image does not capture the full extent of the walls.

However, the physically large extent of our ULA w.r.t. the propagation distances of interest covers
a reasonably large portion of the walls in the resulting radar image in Fig. 5.2. This is a feature of
the sub-10 GHz operating frequency range which allows to form physically large apertures.
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Figure 5.2: The obtained bistatic MIMO radar image shows the received power of the imaging
method (see Section 5.1.2) with the positions of walls estimated through the methods described
in Section 5.1.3. The corresponding positions of mirror sources k ∈ {2, 3} have been computed
by mirroring the synthetic ULA (k = 1) across the walls.

5.1.4 Synthetic Aperture Measurements

We employ the SA measurement testbed described in D1.2 [2] with two mechanical positioners
to measure the channel vector elements [h(pn, f)]m between antenna m of a synthetic ULA and
antenna n ∈ {1 . . . N} of a synthetic URA. The ULA and URA together form a MIMO system,
with the MIMO channel matrix H(f) = [h(p1, f) . . . h(pN , f)] ∈ CM×N obtained by stacking the
N MISO channel vectors for each receive antenna n. The scenario is illustrated in Fig. 5.1, where
the URA is located between metal walls that generate strong SMCs.

We use a Rohde & Schwarz ZVA24 vector network analyzer (VNA) in a two-port configuration to
measure the transmission coefficient S21(f) between a transmit antenna m connected to Port 1
and a receiving antenna n connected to Port 2 (see [2] for a description of the measurement
system). We measure at Nf = 1000 linearly spaced frequencies fi in a frequency band of
spanning 3− 10 GHz.
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5.2 Application Examples

This section shows possibilities that arise when environment information is available, we give
application examples and briefly outline the achievable performance gain. Examples include
general geometry-based based beamforming towards a specific location, and the correspond-
ing extension to increase the power received there, the exploitation of frequency diversity and
multipath-based positioning.

5.2.1 Geometry-based Beamforming

In the following, instead of a URA we assume that a single-antenna UE device is placed at
a location pue, using the collected measurement data briefly discussed in Section 5.1.4 in a
MISO configuration. We aim to transmit power to the UE device solely based on the assumed
known geometric location of the UE device and the inferred locations of the K = 3 sources, i.e.,
mirror sources and the LOS. We use a geometry-based beamformer at the chosen frequency of
fc = 3.79GHz and compute beamforming weights using MRT as

w =
K∑
k=1

wk with wk =
h̃∗

k(pue, fc)

∥h̃(pue, fc)∥
(5.7)

where the predicted channel vector h̃(pue, fc) is the superposition of the K = 3 predicted SMC
channel vectors h̃k(pue, fc), computed using (5.2) and the estimated mirror source locations. We
can compute the phasors for each SMC k using (5.3)

α̂k = hTwk

√
Pt (5.8)

using the assumed “true” (measured) channel vector h to quantify the contribution of each mirror
source on the sum-phasor α̂ =

∑K
k=1 α̂k received by the UE, e.g., considering it to be an END

that needs to be supplied with power. Note that the channel vectors hk are not independent
and thus the computed phasors α̂k only approximate the amplitudes of the kth SMC. Fig. 5.3a
shows that the SMC phasors α̂2 and α̂3 are not well aligned with the LOS phasor α̂1 as a result
of uncertainty in the estimated mirror source locations. The SMC beams interfere destructively at
the UE, resulting in a path gain PG ≈ −35.3 dB when using predicted weights in (5.7).

5.2.2 Beam Phase Optimization for WPT

To compensate for geometric uncertainties in the environment model, we employ an optimiza-
tion of SMC beam phases that we proposed in [34, eq. (14)]. The objective is to find optimal
phase shifts φ̃k applied to the weights wk such that the path gain at the EN device is maximized.
Note that the number of beam phases to be optimized is K − 1, i.e., the phase of one beam
(e.g., the LOS beam) can be kept constant and all other beam phases are optimized. Fig. 5.3b
shows the corresponding optimized phasors α̃k. After the optimization, the EN device receives a
sum-phasor that translates to a path gain PG ≈ −28.3 dB using our predicted CSI, which gets
reasonably close to the maximum path gain PGMAX ≈ −27.2 dB achievable with full CSI. Fig. 5.4a
shows the PG distribution evaluated across the aperture of the URA given the optimized beam-
forming weights w̃.

A strong standing wave pattern is visible in Fig. 5.4a, originating from the wall behind the EN
device, i.e., mirror sources k = 2 and k = 1 being located on opposite sides of the EN device.
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Figure 5.3: Phasors αk in the complex polar plane computed on the “true” (measured) channel
vector h (dash-dotted) with beamforming weights generated from the predicted SMC channel
vectors h̃k (solid) and Pt = 1W. The phase optimization in Section 5.2.2 aligns the phases of
SMC beams in the complex plane and thus maximizes the sum-phasor (dashed) received by the
UE device.

This is a particular problem of performing WPT in indoor environments as we have demonstrated
in [3].

Fig. 5.4b shows the resulting PG distribution when using the mirror source k = 3 only, revealing
how the geometric model uncertainty impacts the location of the resulting SMC beam. At the
same time, it confirms that the reflection from the corresponding metal wall is reasonably specular
as our SMC channel model results in a clearly visible beam originating from the location of the
third mirror source k = 3.

5.2.3 Dual-band Operation

The distributed radio infrastructures of RW may not have a large frequency band of 3GHz to
10GHz available. However, a dual-band operation may be a suitable alternative to provide suf-
ficient imaging results for inferring walls. To test the performance of a dual-band operation, we
restrict the measured bandwidth to a 100MHz band centered around 3.79GHz and a 1.2GHz
band centered at 6.5GHz (a frequency band designated for Wi-Fi 6E in the U.S., South Korea,
Brazil, and Canada [40]) and repeat the imaging procedure. The resulting radar image is shown
in Fig. 5.5. As can be observed from the figure, walls are inferred at “ripples” in the radar image at
some distance from the previously estimated locations given the full bandwidth. However, Fig. 5.6
shows that the phase-optimization method still attains a reasonable efficiency of PG ≈ −28.2 dB
for wireless power transfer. More sophisticated schemes may be better able to estimate wall
locations and provide better results.

The dual-band operation performs worse in inferring the walls (see Fig. 5.5) but still showed a
reasonable performance for the given application of WPT. Thus it may be a suitable approach for
future distributed radio infrastructures, especially when being used with more elaborate estima-
tion schemes.
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Figure 5.4: Measured PG distribution across the synthetic URA (interpolated) when applying
geometry-based beamforming: Channel vectors hk are predicted using the estimated geometric
environment information from Fig. 5.2.

5.2.4 Multipath-based positioning

Multipath-assisted or multipath-based positioning is one key application field where environment
information can be exploited. Assuming that an environment model is available, e.g., estimated
as described in Section 5.1.2, or as in [41, 4, 42], improvements regarding accuracy as well as
robustness are expected for positioning approaches and model-based beamforming for commu-
nication and WPT are expected. The use of mirror sources as what are commonly termed virtual
anchors, i.e., additional virtual CSPs, can be especially useful in NLOS scenarios where the di-
rect path link is blocked, either by walls in the environment or by moving objects or the user itself,
allowing to keep a limited-quality link available. These approaches can work directly on the infor-
mation provided by the graph-based channel data fusion approach applied to subarrays, outlined
in Section 4.2.
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Figure 5.5: The obtained bistatic MIMO radar image generated with the dual-band operation. The
walls are inferred at “ripples” in the radar image at some distance from the locations that would
be estimated using the full bandwidth (see Fig. 5.2).
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Figure 5.6: Phasors αk in the complex polar plane generated with the dual-band operation. A
reasonable efficiency of PG ≈ −28.2 dB is attained after the phase optimization in Section 5.2.2,
despite deviations in the estimated wall locations.
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Chapter 6

Summary

This deliverable presents the results of algorithms for positioning-related applications, synchro-
nization and distributed calibration as well as environment learning. The algorithms are inves-
tigated in the context of the RadioWeaves (RW) infrastructure, with the focus being on the al-
gorithm performance, the system level performance and the system parameter dependency or
system layout. The covered topics are the positioning and synchronization performance of an
exemplary RW infrastructure. To this end we analyze the positioning performance by applying an
extended Kalman filter (EKF)-based algorithm, allowing to track a mobile user equipment (UE) as
well as system synchronization parameters, a system calibration method to enable reciprocity-
based communication and dedicated positioning algorithms, distributed channel estimation in a
graph-based algorithm, and environment learning exploiting the large aperture of the RW infras-
tructure.

We derive the fundamental performance limits for joint positioning and synchronization in a sys-
tem consisting of Contact Service Points (CSPs) equipped with large arrays. To achieve the
necessary system flexibility we investigate the performance in a subarray-based setup, as it com-
bines advantages of compact arrays (avoiding spatial aliasing) and widely distributed arrays (di-
versity and favourable geometric dillution of precisicion). We show that the distribution of small
subarrays with increased spacing leads to a favorable performance in position estimation in in-
door environments experiencing diffuse multipath propagation. In addition, the performance loss
in the bandwidth region of interest, that is introduced when performing joint positioning and syn-
chronization, can be overcome by selecting suitable CSP position layouts, even when the size
of the subarrays is small. On the other hand, this small subarray was shown to suffer from a
performance degradation when the UE moves farther away from a specific CSP, which is a well
known effect attributable to the fact that the contribution of angle-information to the overall po-
sitioning accuracy rapidly decreases with increasing distance. With the distributed, user-centric
architecture, this effect is expected to be countered. Additionally, this effect favors the design
of federations, by allowing to provide additional input to the formation process, e.g., in terms of
metrics for the achievable positioning performance.

In the graph-based algorithm is investigated, we have shown that it is possible to deal with mul-
tipath environments, taking the non-stationarity of multipath components (MPCs) is actively into
account. The algorithm shows promising results as it allows to track even low-signal-to-noise
ratio (SNR) MPCs, which can be important in non-line-of-sight (NLOS) conditions and generally
”noisy”, and multipath or interference-rich environments. Furthermore, the algorithm also allows
to obtain additional information in terms of the visibility of MPCs as outlined in the channel model
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discussed in D1.2 [2], which can again serve as input to, e.g., the federation formation.

As a next step from the graph-based algorithm, we investigate an EKF-based algorithm for po-
sitioning. The EKF-based algorithm is able to cope with clock offset between a large number of
CSPs and performs joint positioning and synchronization. The performance was analyzed with
simulated data for different levels of measurement accuracy, showing the trade-off between angle
and range accuracy. As it was shown to be possible to additionally track the clock drift, e.g., con-
sidering time varying clock offsets, additional information could be provided to synchronization
algorithms should this be deemed necessary, e.g., by triggering a re-synchronization algorithm
when at times decided upon due to the ”speed” of the drift. While not yet fully investigated at
this stage, the possibility to include environment information that can be fed back to algorithms to
improve the robustness, e.g., in NLOS scenarios, is anticipated.

Maximum ratio transmission (MRT) schemes are known to yield high performance while requiring
reciprocity calibration of the transceiver frontends, which is not always given. For this reason, a
reciprocity calibration approach is investigated which enables to perform coherent communication
in distributed multiple-input multiple-output (MIMO) systems. The proposed calibration approach
is benefitial for all transceiver functions that require accurate channel state information, i.e. for
communication, positioning, environment estimation, and wireless power transfer. In general,
distributed MIMO represents an instantiation of the RW infrastructure consisting of distributed
CSPs communicating with multiple UEs.

Environment sensing provides important information for algorithms that can exploit parametric
environment information, for example when performing multipath-based positioning or position-
based beamforming, where multipath components are used to improve positioning accuracy, or
the amount of transmitted power or data. Especially in the MIMO radar approach discussed in
this report, the large expected aperture of the distributed RW infrastructure will allow for a high
accuracy imaging.

The algorithms presented in this deliverable have shown to be sufficiently flexible to allow appli-
cation to the diverse use cases treated by the RW infrastructure. While environment learning has
already been applied to real measurements, the testing of algorithms based on simulations allows
to efficiently analyze performance under controlled conditions. The next step is algorithm testing
based on the extensive set of measurement data collected in various environments and system
configurations, e.g., in the course of the channel modeling work in D1.2 [2], with a selection of
the measurement data presented there. Furthermore synergies between the algorithms will be
leveraged, for instance using the channel parameter estimation algorithms to extract parametric
channel models for model-based wireless power transfer.

In conclusion, a strong feature of RW is the envisioned wide distribution, allowing to exploit the
large overall system aperture for positioning, but also position-awareness in other applications.
As a direct result, a sufficiently high performance in terms of positioning accuracy is anticipated.
Another key feature is the targeted system flexibility, allowing to obtain scalable algorithms. A
subarray-based estimation of position-related parameters is expected to, on the one hand, im-
prove the distribution of computational resources, but also to enable targeting a reduction of the
power consumption by incorporating position information alongside environment information that
is kept up to date constantly after the RW is set up.
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Appendix A

Fisher Information Matrix for Channel
Parameters

The elements of the Fisher information matrix (FIM) J
(j)
ch in (3.11) are obtained by evaluat-

ing [15, Sec. 15.7]. Due to symmetry, [J (j)
ch ]mn = [J

(j)
ch ]nm holds. For readability we will drop

the CSP/subarray index j and denote x(θ) = x(φ, ϑ, τ) = [(x1(φ, ϑ, τ))
T, . . . , (xM(φ, ϑ, τ))T]T.

At the example of the FIM elements for the azimuth angle, one can show that

[Jch]φφ = 2R
[
α2∂x(φ, ϑ, τ)

H

∂φ
C−1∂x(φ, ϑ, τ)

∂φ

]
(A.1)

= 2R
[
α2
∑
m

∂xm(φ, ϑ, τ)
H

∂φ
C−1

m

∂xm(φ, ϑ, τ)

∂φ

]
(A.2)

due to the independenc assumptions between different array elements. From this it is furthermore
possible to show that when choosing the array reference position as the center of gravity, all FIM
entries containing one derivative w.r.t. azimuth or elevation and the other not w.r.t. azimuth or
elevation will be come zero as this reference point selection will result in∑

m

∂gm(φ, ϑ)

∂φ
= −i2πf

(∑
m

∂u(φ, ϑ)T

∂φ
amgm(φ, ϑ)

)
= 0 (A.3)

to vanish. The remaining FIM elements of the position-related as well as nuisance parameters
are found to be

[Jch]φϑ = 2R
[
α2∂x(φ, ϑ, τ)

H

∂φ
C−1∂x(φ, ϑ, τ)

∂ϑ

]
(A.4)

[Jch]φτ = 2R
[
α2∂x(φ, ϑ, τ)

H

∂φ
C−1∂x(φ, ϑ, τ)

∂τ

]
(A.3)
= 0 (A.5)

[Jch]ϑϑ = 2R
[
α2∂x(φ, ϑ, τ)

H

∂ϑ
C−1∂x(φ, ϑ, τ)

∂ϑ

]
(A.6)

[Jch]ϑτ = 2R
[
α2∂x(φ, ϑ, τ)

H

∂ϑ
C−1∂x(φ, ϑ, τ)

∂τ

]
(A.3)
= 0 (A.7)
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[Jch]ττ = 2R
[
α2∂x(φ, ϑ, τ)

H

∂τ
C−1∂x(φ, ϑ, τ)

∂τ

]
(A.8)

[Jch]φϕ = 2R
[
α2∂x(φ, ϑ, τ)

H

∂φ
C−1∂x(φ, ϑ, τ)

∂φ

]
(A.9)

[Jch]φα = 2R
[
α
∂x(φ, ϑ, τ)H

∂φ
C−1x(φ, ϑ, τ)

]
(A.3)
= 0 (A.10)

[Jch]φτ = 2R
[
α2∂x(φ, ϑ, τ)

H

∂φ
C−1∂x(φ, ϑ, τ)

∂τ

]
(A.3)
= 0 (A.11)

[Jch]ϑϕ = 2R
[
α2∂x(φ, ϑ, τ)

H

∂ϑ
C−1∂x(φ, ϑ, τ)

∂ϑ

]
(A.12)

[Jch]ϑα = 2R
[
α
∂x(φ, ϑ, τ)H

∂ϑ
C−1x(φ, ϑ, τ)

]
(A.3)
= 0 (A.13)

[Jch]τα = 2R
[
α2∂x(φ, ϑ, τ)

H

∂τ
C−1∂x(φ, ϑ, τ)

∂τ

]
(A.14)

[Jch]ϕϕ = 2R
[
α2x(φ, ϑ, τ)HC−1x(φ, ϑ, τ)

]
(A.15)

[Jch]αα = 2R
[
x(φ, ϑ, τ)HC−1x(φ, ϑ, τ)

]
. (A.16)

The corresponding derivatives of the separate steering vectors contained in x(θ) and conse-
quently xm(φ, ϑ, τ) are given as

∂gm(φ, ϑ)

∂φ
= −i2πf

(∂u(φ, ϑ)T
∂φ

am

)
gm(φ, ϑ) (A.17)

∂b(τ)

∂τ
= f ◦ b(τ) (A.18)

with f = [f1, . . . , fN ]
T and with derivatives w.r.t. angles of the direction vector u(φ, ϑ)

∂u(φ, ϑ)

∂φ
= sinϑeφ (A.19)

∂u(φ, ϑ)

∂ϑ
= eϑ (A.20)

where eφ and eϑ are unit vectors defined as (see Figure 2.1b)

er = u(φ, ϑ) eϑ = [cosφ cosϑ, sinφ cosϑ, sinϑ]T eφ = [− sinφ, cosφ, 0]T.
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