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Executive Summary

This REINDEER deliverable reports on the several studies conducted for the task T2.2 which
deals with a detailed evaluation of the distributed processing across infrastructure and the asso-
ciated requirements on back-haul and synchronization. It also focuses on identifying the process-
ing elements to execute the various tasks to provide the required services using the Radioweaves
infrastructure. It evaluates several distributed processing algorithms for both uplink and downlink
in a radioweave system, and studies on the trade-offs between computational complexity and per-
formance. A scalable algorithm is proposed to easily decide on addressing the trade-off issues.
Furthermore, the performance is assessed when the fronthaul capacity is limited, and proposes
algorithms for uplink processing. Memory distribution and the associated data exchange between
clusters of service points is also studied in detail.
The overall outcome of this deliverable is a comprehensive study and evaluation of the distributed
processing algorithms in a RadioWeaves infrastructure and the associated requirements on the
fronthaul. It also addresses several architectures to synchronize the multiple service points in a
detailed manner.

REINDEER D2.2 Page II



D2.2 - Evaluation of the distribution of processing across infrastructure and associated
requirements on back-haul and synchronization

Contents

List of Abbreviations 2

1 Introduction 3
1.1 Key terminology for RadioWeaves (RW) architectures . . . . . . . . . . . . . . . 4

2 Synchronization of distributed hardware resources and distributed processing al-
gorithms 6
2.1 Clock Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.1 One physically shared clock . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1.2 CSPs with their own clock source . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Uplink D-MIMO with Decentralised Subset Combining . . . . . . . . . . . . . . . 12
2.2.1 System model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.2 Centralised Combining . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.3 Decentralised Processing and Combining . . . . . . . . . . . . . . . . . . 15
2.2.4 Deployment Model and Simulation Parameters . . . . . . . . . . . . . . . 16
2.2.5 Numerical Comparisons . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3 Uplink D-MIMO Processing using Kalman Filter Combining . . . . . . . . . . . . . 24
2.3.1 Kalman Filtering for Decentralised Combining . . . . . . . . . . . . . . . . 24
2.3.2 Implementation requirements . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.3.3 Numerical Comparisons . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3 Processing elements for efficient execution of distributed processing 32
3.1 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.2 Uplink signal estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2.1 Standard recursive least squares (SRLS) algorithm . . . . . . . . . . . . . 34
3.2.2 QR decomposition based recursive least squares (QR-RLS) algorithm . . 34
3.2.3 Low precision implementation of the recursive algorithms . . . . . . . . . . 35
3.2.4 Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.3 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4 RW topology and government 40
4.1 Infrastructure architecture/topology considerations . . . . . . . . . . . . . . . . . 40
4.2 Distributed processing and federations . . . . . . . . . . . . . . . . . . . . . . . . 42

4.2.1 Selected algorithms and topology . . . . . . . . . . . . . . . . . . . . . . 42
4.2.2 Required memory size and data exchange bandwidth . . . . . . . . . . . 44
4.2.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.3 Allocation of resources for dynamic management of federations . . . . . . . . . . 48

REINDEER D2.2 Page III



D2.2 - Evaluation of the distribution of processing across infrastructure and associated
requirements on back-haul and synchronization

5 Summary and Conclusions 49

Bibliography 52

REINDEER D2.2 Page IV



D2.2 - Evaluation of the distribution of processing across infrastructure and associated
requirements on back-haul and synchronization

List of Figures

1.1 Overview of a RW architecture with its main components. . . . . . . . . . . . . . 4

2.1 One shared oscillator connected to all contact service points (CSPs). . . . . . . . 8
2.2 Architecture with distributed low frequency clock as reference signal for the in-

tegrated phase-locked loop (PLL) and pulse per second (PPS) signal for phase
synchronisation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Representation of distributed CSPs, each having their own edge computing cir-
cuitry and network connection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.4 Highly flexible architecture with customized hardware for Ethernet synchronization. 11
2.5 Uplink data transmission in a D-MIMO network . . . . . . . . . . . . . . . . . . . 14
2.6 Subset that consists of three CSPs for each user equipment (UE). . . . . . . . . . 16
2.7 Different topologies for CSPs connection to edge computing service point (ECSP). 16
2.8 Path-gain in a D-MIMO network with 36 CSPs. . . . . . . . . . . . . . . . . . . . 17
2.9 Centralised and decentralised combining methods using minimum mean square

error (MMSE). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.10 SE@10th and 90th percentile with different combining methods using MMSE and

maximum ratio combining (MRC). . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.11 Comparing subsets with level 4. . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.12 Propagation path-gain in a D-MIMO network. . . . . . . . . . . . . . . . . . . . . 20
2.13 SE@10th percentile by sweeping L, MMSE combining. . . . . . . . . . . . . . . . 20
2.14 SE@10th percentile by sweeping N . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.15 SE@10th percentile by sweeping N . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.16 SE@10th percentile by sweeping K, where τP = 15. . . . . . . . . . . . . . . . . 23
2.17 SE@10th percentile by sweeping N , where K = 20. . . . . . . . . . . . . . . . . 23
2.18 Example of a CSP within a RW performing two types of Kalman filter operations. . 27
2.19 Calculation complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.20 Centralised and decentralised combining methods. . . . . . . . . . . . . . . . . . 30
2.21 MMSE and Kalman Filter implementations. . . . . . . . . . . . . . . . . . . . . . 30

3.1 Scaled fixed-point quantizer. amin, amax, Qmin, Qmax ∈ R. . . . . . . . . . . . . . . 36
3.2 Average squared error in CSPs, L = 25, N = 4, K = 5, W = 32. . . . . . . . . . 37
3.3 Average squared error in CSPs, L = 25, N = 4, K = 5, W = 16. . . . . . . . . . 38
3.4 Average squared error in CSPs, L = 25, N = 4, K = 15, W = 16. . . . . . . . . 39
3.5 Probability mass function of SRLS divergence in each CSP, L = 25, N = 4, W = 16. 39

4.1 Two deployment scenarios with CSPs on a Daisy-chain front-haul. Coverage area
of each CSP indicated in blue. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

REINDEER D2.2 Page V



D2.2 - Evaluation of the distribution of processing across infrastructure and associated
requirements on back-haul and synchronization

4.2 Introducing additional front-haul links (compared to Fig. 4.1) across the corridor to
lower Front-haul distance (FD) between CSPs with low Wireless distance (WD) on
opposite sides. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.3 Centralized architecture with all the CSPs connecting to a centralized processing
unit (CPU), e.g., ECSPs, in a “star” topology. . . . . . . . . . . . . . . . . . . . . 43

4.4 Recursive least squares (RLS) algorithm mapped to a Daisy-chain topology. . . . 43
4.5 A 2-D CSP array is connected in a multi-level tree topology. . . . . . . . . . . . . 44
4.6 Illustration of different frame structures. . . . . . . . . . . . . . . . . . . . . . . . 46
4.7 CSPs connected with bidirectional links in a Daisy-chain and a 2-D mesh topology,

respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

REINDEER D2.2 Page VI



D2.2 - Evaluation of the distribution of processing across infrastructure and associated
requirements on back-haul and synchronization

List of Tables

1.1 Short description of the components. . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1 Advantages and shortcomings of the shared clock architecture. . . . . . . . . . . 8
2.2 Advantages and shortcomings of the distributed low frequency clock architecture. 9
2.3 Advantages and shortcomings of the shared low frequency clock controlled over

network architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.4 System parameters used for downlink performance evaluations . . . . . . . . . . 17
2.5 The front-haul capacity requirement. . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.1 System and design parameters used for memory and data exchange analysis . . 44

REINDEER D2.2 Page VII



D2.2 - Evaluation of the distribution of processing across infrastructure and associated
requirements on back-haul and synchronization

List of Abbreviations

ADC analog-to-digital converter. 9

CDF cumulative distribution function. 19, 29

CLK clock. 6, 9

CPU central processing unit. 42

CSP contact service point. 3–17, 19–21, 24–29, 31, 32, 34–49, III, V, VI

DRAM dynamic random-access memory. 45

ECSP edge computing service point. 4, 6, 12–16, 20, 24, 26–28, 42–45, 48, V, VI

EN energy neutral. 7

FD Front-haul distance. 40–42, 47, VI

ISI intersymbol interference. 7

LO local oscillator. 8–11, 31

LS least squares. 43

MIMO multiple-input multiple-output. 49

MMSE minimum mean square error. 3, 6, 12, 14, 15, 18–20, 24, 25, 27, 29–31, V

MRC maximum ratio combining. 18, 19, V

NTP Network Time Protocol. 11

OFDM orthogonal frequency-division multiplexing. 11, 44–46

OTA over-the-air. 11, 31

PLL phase-locked loop. 8–10, 31, V

PPS pulse per second. 8–11, 31, V

PTP Precision Time Protocol. 11

REINDEER D2.2 Page 1 of 52



D2.2 - Evaluation of the distribution of processing across infrastructure and associated
requirements on back-haul and synchronization

QR-RLS QR decomposition based recursive least squares. 34–38, 49, III

RF radio frequency. 8–11

RLS recursive least squares. 36, 43, 45–47, VI

RW RadioWeaves. 3–6, 27, 31, 40–49, III, V

SE spectral efficiency. 6, 12, 15, 17, 19, 24, 26, 29

SINR signal-to-interference-plus-noise ratio. 6, 15, 20, 21, 26

SRAM static random-access memory. 45

SRLS standard recursive least squares. 34–39, 49, III, V

TDOA time-difference-of-arrival. 7

TOA time-of-arrival. 7

UE user equipment. 4, 5, 7, 10, 13–17, 19–21, 24–26, 29, 31–34, 36–38, 48, 49, V

WD Wireless distance. 41, 42, 47, VI

WPT wireless power transfer. 7

WR White Rabbit. 11

ZF zero forcing. 42, 44, 45

REINDEER D2.2 Page 2 of 52



D2.2 - Evaluation of the distribution of processing across infrastructure and associated
requirements on back-haul and synchronization

Chapter 1

Introduction

Algorithms for RadioWeaves (RW) data processing must always consider the associated hard-
ware impact. The key to success is to find a good balance between implementation complexity
and performance. It is very easy to over-engineer an algorithm resulting in a highly expensive
product. Alternatively, focusing only on what is easy to implement at low cost can result in lack-
luster performance. By jointly designing algorithms and hardware where close attention is paid to
performance versus algorithmic complexity trade-offs as well as consequences on the hardware
components, we can design solutions that meet the highest expectations.

This document reports on the results of the research evaluating the distribution of processing
across infrastructure and associated requirements on back-haul and synchronization. Estimates
of distributed hardware resources, and their synchronization, needed to implement targeted al-
gorithms are provided for selected services and the associated requirements on back-haul data
transfer between processing/hardware units.

In Chapter 2, high-performing and cost-efficient distributed processing algorithms suitable for up-
link processing in a RadioWeaves (RW) system are evaluated. It also discusses the synchroniza-
tion of distributed hardware resources. We show that the proposed decentralized subset method
is a scalable solution providing an easily controlled trade-off between computational complexity
and performance. By describing the distributed processing as a Kalman filter operation, we show
that the proposed algorithm provides an optimum solution in the minimum mean square error
(MMSE) sense. The decentralized Kalman filter solution makes it simple to decide the most cost
efficient trade-off between performance and implementation cost.

In Chapter 3, the impact of limited front-haul links between service points is further examined. A
low-precision implementation of two recursive algorithms to solve the regularized least-squares
(LS) problem for uplink signal estimation in a RW network is considered. The performance impact
and the front-haul requirement relaxation when communication on the front-haul links between
contact service points (contact service points (CSPs)) are quantized, is studied. It is shown that
the proposed algorithm is numerically stable under all simulated scenarios.

Memory distribution and exchange of data between processing clusters are studied in Chapter
4. The required memory for storing channel matrices and buffering radio frames is discussed, as
well as the required bandwidth for data exchange between processing clusters. Requirements
depend on, e.g., the selected processing algorithms, the mapping of the algorithms to the hard-
ware architecture, the number of users served, the structure and format of the radio frames, etc.
The data exchange requirements for federation orchestration, user association, and resource
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allocation are also discussed.

1.1 Key terminology for RW architectures

We here include the overall architectural terminology as adapted in the REINDEER project to
enhance readability of this deliverable as a stand-alone document. Fig. 1.1 shows an illustrative
architecture demonstrating the distributed CSPs that host radio equipment with an antenna or
antenna array establishing the actual link(s) to the user equipments (UEs), as well as the edge
computing service point (ECSP) that provides substantial compute power.

Figure 1.1: Overview of a RW architecture with its main components. The RW system consists
of at least one, but preferably many ECSPs. This component is responsible for data aggregation
and coordination of CSPs. A CSP is the first contact point from the UE perspective and provides
the necessary services to support user applications. A CSP can be equipped with one or several
radio elements. To allow for a synchronized/coherent system, ECSP can act as a synchronization
anchor to synchronize its CSPs. More details can be found in Table 1.1.
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Table 1.1: Short description of the components.

Term Abbreviation Description

RadioWeave RW Wireless access infrastructure consisting of a fabric of
distributed radio, computing, and storage resources.

Radio Element RE Transmit/receive units, most often including an antenna,
that can serve to exchange data or charge devices using
electromagnetic waves.

Contact Service Point CSP Integrates local computation and storage resources, and
provides at least communication, sensing or charging
functionality. It is the first contact point as seen from
the UE and takes the role of an anchor in the context of
position related applications.

Edge Computing Service
Point

ECSP Shared compute resources integrated in the RW that
can support applications in need of substantial compute
power and/or connection to the back-haul or other RW
infrastructures.

(Dynamic Service) Federa-
tion

DSF (Temporary) set of cooperating resources in the RW,
working in unison, that could be more or less synchro-
nized, and including at least CSPs and typically a syn-
chronization anchor, and potentially edge processing
unit(s), established to serve a cluster of devices and/or
application(s).

Synchronization Anchor SA Logical function flexibly located attributed to a certain
CSP to serve as a synchronization reference for a set
of cooperating CSPs for some period.
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Chapter 2

Synchronization of distributed hardware
resources and distributed processing
algorithms

In this chapter, we present performance evaluations of some of the cost efficient distributed algo-
rithms for processing uplink and downlink data in a RadioWeaves (RW) system. This chapter is
organised as follows:

In Section 2.1, we discuss different kinds of clock (CLK) sources and architectures which can be
used to synchronize the contact service points (CSPs) in a distributed wireless communication
system. In Section 2.2, we analyse a decentralised processing and combining method for uplink
for different federation sizes. A subset of CSPs that are connected to the same edge computing
service point (ECSP) is defined for each UE. A subset that consists of only one CSP turns the RW
network into “small cell” network; a subset that consists of all CSPs connected to the ECSP give
the same performance as a fully centralised method. This shows that the subset method provides
a very scalable trade-off between complexity and performance. It is simpler to implement as the
processing can be distributed and parallelised. In the studied simulation scenarios, we show that
it is possible to reach 85% of the performance upper bound by including only 20% of total CSPs
in the subset, and to reach 95% of the performance upper bound by including 40% of CSPs in
the subset.

In Section 2.3, we extend the subset combining method by Kalman filtering to estimate the re-
ceived uplink signals. We analyse the uplink performance as well as the computational complexity
with different combining methods. We show that the Kalman filter implementation provides the
same result as the minimum mean square error (MMSE) method in terms of the spectral effi-
ciency (SE) and equivalent signal-to-interference-plus-noise ratio (SINR). However, the Kalman
filter implementation is shown to be very efficient as it provides the possibility to fully utilise paral-
lel computing of distributed hardware processors. Moreover, the processing can be decentralised
and the estimates can be aggregated from local estimates to as many CSPs as needed to reach
the desired performance target. A Kalman filter implementation has the flexibility to aggregate
signals in different ways, allowing the front-haul architecture to support connectivity of individual
CSPs in any combination of parallel or serial manners.

In the Reindeer project, synchronization between the CSPs is a key requirement to support the
functionalities of multiple applications. The physically distributed systems make it challenging to
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provide coherent operation. There is a need for frequency and phase synchronization to avoid
interference at the user equipment (UE) (or energy neutral (EN) device for wireless power transfer
(WPT)) locations and time synchronization to avoid intersymbol interference (ISI). In distributed
systems, a frequency synchronization mismatch will always occur between two CSPs called the
frequency offset or carrier frequency offset and a phase offset. The RF front-end of each
transceiver causes the phase offset. An offset within certain margin is permissible. Therefore, it
is important to understand the offset differences between multiple CSPs.

A summary of mismatches between two signals is described by six parameters. Here the phase
drift and time drift are related to the frequency offset.

• Frequency offset (over time, partly depending on frequency drift) and frequency drift (inde-
pendent)

• Phase offset (independent) and phase drift (depending on frequency offset)

• Time offset (independent) and time drift (depending on frequency offset)

Both the architecture, software and selected hardware are crucial to grasp the occurring mis-
matches.

Previous deliverable D2.1 already discussed the functionalities that require synchronized CSPs.

• Localizing UEs via time-of-arrival (TOA) and time-difference-of-arrival (TDOA) require ac-
curate time synchronization (discussed in D2.1 section 6.2.1.2).

• Wireless powering EN devices require frequency and time synchronization (discussed in
D2.1 section 6.3.3 Option 2).

This chapter mainly looks at the different synchronization architectures between multiple CSPs.
Hardware blocks for enabling WPT are discussed in D2.3.
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2.1 Clock Sources

2.1.1 One physically shared clock

2.1.1.1 Shared carrier frequency

One shared clock is distributed among all the CSPs presented in Figure 2.1. The clock foresees
the carrier frequency for every radio frequency (RF)-chain of each CSP. A phase shifter can ad-
just the carrier frequency phase and steer the signal in the desired direction. This shared carrier
frequency is directly connected to the mixer resulting in an equal carrier frequency of all trans-
mitted signals. A central controller is connected to all RF chains/front-ends and is additionally
capable to change phase-locked loop (PLL) output frequency. Table 2.1 describes this approach
more in detail.

Figure 2.1: One shared oscillator connected to all CSPs.

Synchronisation description

Mechanism One carrier frequency, generated by the central PLL, is distributed to each CSP using, e.g.,
coaxial cables.

Synchronisation mismatches

Frequency offset Not present, there is only one PLL generating the shared signal.
Frequency drift Cannot occur between CSPs.
Phase offset Possible. Will not occur if all cable lengths are equal.
Time offset Potentially, if communication between controller and RF front-end cannot occur synchronous.

Proposed solution: An additional cable (e.g. PPS-cable or a pulse generated by the controller)
could be added to synchronize RF front-end commands. For power transfer with single tone
signals, time offsets are tolerable, especially as long as the signals are transmitted with desired
phase offset relative to the reference LO.

Architectural strengths and weaknesses

Scalability Challenging and expensive. On the one hand, a highly accurate clock distribution device should
have as many output ports as there are CSPs. Cable lengths must be perfectly equal or must
exactly match a number of times the wavelength. The latter is only possible if the operating
frequency is constant and thus the wavelength is fixed. The bandwidth of the cables should be
high enough to prevent attenuation and distortion of the signals.

CSP complexity Despite its low scalability, the CSP architecture is limited to a mixer, power amplifier and an-
tenna. A baseband or phase offset signal is sent to each CSP through the controller.

Table 2.1: Advantages and shortcomings of the shared clock architecture.
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2.1.1.2 Shared low frequency clock

Two cables from a central distribution rack are connected to every CSP to ensure both a low
frequency clock and PPS signal. The low frequency clock serves as a stable reference clock
for the PLLs in each CSP. The PPS can be engaged for phase offset synchronisation to ensure
each PLL achieve relative phase coherence. PLL phase synchronisation is discussed in D2.3 [1].
The RF-front can be similar to Section 2.1.1.1 consisting of a mixer, a low pass filter and a
power amplifier. Again, the controller can send the corresponding analog baseband signals to
all RF chains. Contrary, digital data can be forwarded to the CSPs and converted internally to
the analog baseband signal, therefore an additional analog-to-digital converter (ADC) is required.
Figure 2.2 represents the architecture and Table 2.2 describes this approach more in detail.

Figure 2.2: Architecture with distributed low frequency clock as reference signal for the integrated
PLL and PPS signal for phase synchronisation.

Synchronisation description

Mechanism Every CSP is equipped with a PLL to generate the LO signals. Each individual PLL is supplied
with one shared stable reference signal. Additionally, a distributed PPS signal can synchronize
the generated PLL outputs to achieve relative coherence between all LOs.

Synchronisation mismatches

Frequency offset Not present, if all PLL registers are set equally.
Frequency drift Cannot occur due to shared reference clock.
Phase offset Possible. There will be phase coherent LOs outputs, if some accurate synchronisation signal is

available. This could be a PPS signal. Therefore, equal PPS cable lengths are required and the
PLLs architecture should be equipped with an additional synchronisation input. See also [1].

Time offset Can be solved also with the PPS input. The commands for the RF front-end, generated by the
controller, can be triggered synchronously on the PPS signals.

Architectural strengths and weaknesses

Scalability Two cables must be distributed towards each CSP. Again, a highly accurate distribution device
for both the CLK and PPS signal should have as many output ports as there are CSPs. The ca-
ble bandwidth can be rather low, since the reference clock will be only several MHz. Moreover,
the frequency of the PPS signal is only 1Hz. Additionally, the controller should be connected
to each CSP to control all devices of the RF front-end.

CSP complexity The CSP hardware is slightly more complex since here the PLL is also built-in compared to
Section 2.1.1.1. A PPS, reference clock controller input is needed, although the cabling can be
more low cost due to the lower required bandwidth.

Table 2.2: Advantages and shortcomings of the distributed low frequency clock architecture.
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2.1.1.3 Shared low frequency clock controlled over network

Similarly as discussed in Section 2.1.1.2, a shared reference clock and a PPS signal are con-
nected to all CSPs. The main difference is that each CSP is equipped with an edge controller.
Communication between multiple CSPs can occur through a network. The architectures intro-
duced above need more control lines between central controller and all CSPs. This somewhat
more complex CSP architecture, represented in Figure 2.3, comes with some advantages, ex-
plained in Table 2.3.

CSP

RF front end

Clock source

Clock + PPS

Edge controller
PLL PLL PLL

Network

Figure 2.3: Representation of distributed CSPs, each having their own edge computing circuitry
and network connection.

Synchronisation description

Mechanism Each PLL generates a stable LO and is connected to the shared clock that provides a stable
frequency. A PPS signal can again ensure relative phase coherent LOs between CSPs. A third
cable, such as an Ethernet cable, could provide communication between the different CSPs.

Synchronisation mismatches

Frequency offset Equivalent as Section 2.1.1.2. If all PLL registers are set equal, frequency offset will not occur.
Frequency drift Cannot occur due to shared reference clock.
Phase offset Possible. Similar solution possible as suggested in Section 2.1.1.2. Also network synchroniza-

tion protocols can be enabled making the PPS obsolete. Still, the PPS input will most likely
provide the best accuracy.

Time offset Can be solved with the PPS input or by network synchronisation protocols. The commands and
instructions, generated by the controller, to configure the RF front-end and start transmission
to the UEs, can be triggered synchronously by the PPS signal.

Architectural strengths and weaknesses

Scalability Remains similar to Section 2.1.1.2 with the advantage that only one cable for communication
is required. The reference clock and PPS signals are still required, assuming that the network
could not ensure sufficient synchronisation accuracy.

CSP complexity This is not limited anymore to just RF front, antenna and PLL, but also a peripheral computeris
required, resulting in a higher cost and more complex hardware implementation of every CSP.

Table 2.3: Advantages and shortcomings of the shared low frequency clock controlled over net-
work architecture.

2.1.2 CSPs with their own clock source

Previous architectures were based on a shared clock. As a result, they did not suffer from fre-
quency drift, nor the associated time or phase drift. Here we consider architectures where CSPs
operate based on their own clock. Dedicated solutions are then required to achieve synchro-
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CSP

RF front end

Clock source

Edge controller
PLL PLL PLL

Network switch

Figure 2.4: Highly flexible architecture with customized hardware for Ethernet synchronization.

nization over the CSPs, for which we discuss the options via Ethernet connectivity or via an
over-the-air (OTA) approach.

2.1.2.1 Synchronisation over the network: Ethernet synchronization

Several Ethernet protocols such as Network Time Protocol (NTP), Precision Time Protocol (PTP)
and White Rabbit (WR) could provide the required synchronisation between all edge devices.
The latter is the most complicated and most complex solution to implement on a large scale, yet
sub-nanosecond accuracy and picoseconds precision of synchronization is achievable [2]. Con-
sequently, the PPS and reference clock can be removed, making the architecture more scalable,
contrary also making the network switches more expensive, because PTP and WR require spe-
cific hardware. In addition, the CSP hardware should also be modified to be compatible with the
corresponding protocols and achieve the high synchronisation accuracy. Accordingly, the very
flexible architecture comes with more complex CSP hardware. Moreover, the Ethernet protocols
should be supported by all network devices and switches. Figure 2.4 represents the architecture
with only network cables between the network switch and CSPs.

2.1.2.2 Synchronisation over the network: OTA synchronization

In a wireless transmission system, there are two important clock sources namely the sampling
clock and the RF carrier clock. Due to mismatches in the LOs at the distributed nodes, the
generated frequency and phase of the clocks will slightly differ at different nodes. The drift and
jitter in the sampling clock are quite insignificant. The timing mismatches in the sampling clock
can be addressed by aligning the signaling within the length of the cyclic prefix of an orthogonal
frequency-division multiplexing (OFDM) symbol. However, the carrier clock is affected by the
drift and jitter and needs to be managed in the distributed networks so as the system does not
perform poorly. To clarify this, let us consider two distributed nodes transmitting a real signal x̄(t)
after modulating it to the required carrier frequency. The narrowband signals transmitted from
two nodes can be written as

x1(t) = x̄(t) cos (2πf1t+ α1 + w1(t)) , (2.1)
x2(t) = x̄(t) cos (2πf2t+ α2 + w2(t)) , (2.2)

where f1 and f2 are the carrier frequencies generated from the corresponding LOs at the two
nodes, α1 and α2 are the unknown constant phase shifts at the two nodes, and w1(t) and w2(t)
are zero mean stationary phase noise process. The statistics of the phase noise process depends
on the LO hardware implementation. The superposition of the signals transmitted from both the
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nodes is given by

y(t) = x1(t) + x2(t)

= x̄(t) cos (2πf1t+ α1 + w1(t)) + x̄(t) cos (2πf2t+ α2 + w2(t))

= 2x̄(t) cos

(
2π

f1 − f2
2

t+
α1 − α2

2
+

w1(t)− w2(t)

2

)
× cos

(
2π

(
f1 −

f1 − f2
2

)
t+

α1 + α2

2
+

w1(t) + w2(t)

2

)
.

(2.3)

From (2.3), it is clear that the composed signal can undergo destructive interference when the
carrier frequencies f1 and f2 as well as the the phases α1 and α2 are not synchronized. Thus, in
a distributed transmitting system it is very critical to estimate and synchronize the frequency and
phase among the different transmitting nodes, otherwise the communication system will perform
poorly.

In the presence of unknown multiplicative gains from the RF hardware, the CPU back-haul net-
work is unable to provide accurate timing and phase information to the CSPs. Thus, it becomes
harder to synchronize the distributed CSPs through a wired back-haul network. Over-the-air
(OTA) synchronization methods are advocated to overcome this issue and were studied in [3–11].
Coherent beamforming from distributed transmitters is studied in [4–7,12] and they are based on
master-slave protocol. In the AirSync method proposed in [8], a master CSP transmits out-of-
band pilots continuously to all the slave CSPs. The slave CSPs track the incoming signals phase
offset and compensates it during the data transmission. The AirShare technique proposed in [10]
uses a dedicated emitter circuit to transmit two low-frequency tones over-the-air and the dis-
tributed CSPs generate their reference signal with the frequency equal to the difference of the
two tones. Airshare is robust to external variations like temperature and supply voltage at the
emitter. However, it does not compensate for phase impairments from the hardware. REINDEER
partners in [13] propose a beam-sweep approach where the calibration data between all pairs of
the participating CSPs are collected and are sent to the CSP.

An OTA frequency synchronization protocol named ”Beamsync” which is based on beamforming
the frequency synchronization signal among the CSPs is developed in REINDEER and included
in the second chapter of the deliverable D3.2 [12,14].

2.2 Uplink D-MIMO with Decentralised Subset Combining

In this section we evaluate different combining methods in the distributed MIMO (D-MIMO) in the
uplink. In [15] and [16], four different uplink combining methods were proposed, from a fully cen-
tralised method to locally distributed methods. The fully centralised method, which is called level-4
implementation, uses global MMSE combining, hence providing the best performance in terms
of SE, or equivalently SINR. Fully centralised level-4 combining gives an upper bound, however
it is difficult to realise in practise, both the front-haul capacity requirement and the high computa-
tional complexity at the ECSP is staggeringly high. To reduce the computational complexity at the
ECSP, another three methods, called level 1-3: process the signals at each CSP based on local
information first, and then pass the processed signals to the ECSP for final combining and decod-
ing. Level 1-3 still require centralised combining at ECSP by collecting locally estimated signals
from all CSPs that are connected to a ECSP. Level 1-3 reduce the computational complexity and
traffic load at front-haul but performance is far from level 4.
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To find the possibility to approach the upper bound performance provided by level 4, we propose
to use a decentralised method by defining a subset of serving CSPs for each UE. The subset can
be defined from one serving CSP to all CSPs that are connected to a ECSP. When the subset
consists of only one serving CSP, it turns D-MIMO network into a “small cell” network; subset can
be aggregated by adding more CSPs, from smaller to larger, they are denoted as sub-1, sub-2
depending on the number of CSPs in the subset. If there are L CSPs that connected to a ECSP,
sub-L reaches the same performance as the level 4. However, the performance upper bound
reached by sub-L uses decentralised processing and aggregating. From the signal processing
view in this exploration we are using the term subsets. In further consideration of management
complexity in multi-user scenarios, these may be mapped to the approach of dynamic federations.

The evaluation shows that the proposed subset method provides a scalable trade-off between
complexity and performance. The subset method is simpler to realise as the processing can be
decentralised and parallelised. Moreover, the subset method is very flexible to aggregate. We
can aggregate gradually from local CSPs to reach the desired performance target.

2.2.1 System model

The uplink data processing and combining in a D-MIMO network is shown in Fig. 2.5. The D-
MIMO network consists of L geographically distributed CSPs, each equipped with N antenna
elements. The total number of antennas in the network is N × L. The CSPs are connected
via front-haul links to ECSPs, which facilitate the coordination among CSPs. Note that front-
haul links connecting the CSPs with the ECSP can be serial such as ”radio stripes” [17] or other
topologies (as in Fig. 2.7), as well as wired or wireless. The CSPs are cooperating to serve K UEs
in the coverage area jointly by phase coherent transmission in the downlink and phase coherent
reception in the uplink.

In Fig. 2.5 we introduce some of the notation that will be used throughout this section. We start
with UEk, as shown in Fig. 2.5 (a), the uplink channel between SPl and UEk is denoted as hlk.
If SPl has N antenna elements, hlk is a vector of size N . The data symbol sk transmitted by
UEk is a complex variable. The received signal at SPl denoted as yl, a vector of length N , is a
superposition of the signals sent from all UEs and can be written as

yl =
K∑
k=1

hlksk + nl, (2.4)

where nl is the receiver noise at SPl.

In the D-MIMO network, each UEk can be served by several serving CSPs, say L CSPs: SP1, . . . ,SPL.
The received signals can be expressed as a vector of length NL, y = [y1 . . . yL]

T . Then (2.4)
becomes y1

...
yL

 =
K∑
k=1

h1k
...

hLk

 sk +

n1
...

nL

 . (2.5)

We have K UEs in the D-MIMO network, as shown in Fig. 2.5 (b), we express the uplink signal
from all UEs as a vector of a length K: s = [s1, . . . , sK ]

T . We put the channel vectors between
all UEs and SPl in a matrix form Hl = [hl1 · · ·hlK ], which has a size N ×K. The received signal
yl can now be written as

yl = Hls + nl. (2.6)
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(a) UEk (b) UE1, . . . ,UEK

Figure 2.5: Uplink data transmission in a D-MIMO network

The uplink data processing is to use the received signals y to find what data signal s that UE
transmitted. It can be processed centralised at a ECSP or locally at CSPs. Note that the received
signals are distributed in different CSPs. The uplink data combining is to put together either
received signals or processed signals to get an estimation of the data signal s.

The more CSPs that are selected for processing uplink signals from a UE, the better performance
and the larger complexity in processing. The trade-off between the performance and complexity
needs not to be identical for each UE active in an uplink transmission time interval (TTI).

2.2.2 Centralised Combining

There are different approaches to process and combine the uplink data. In [15], the four levels
combining method using MMSE was proposed: from fully centralised method, which is called
level 4, to local processing and centralised combing level 1-3. We summarise the four levels
method briefly in this section, more details are found in [15].

2.2.2.1 Level 4: Fully centralised Processing

Level 4 is a method with fully centralised processing and combining. It requires that all L CSPs
that are connected to an ECSP of a D-MIMO network send all received pilot signals and received
data signals {yl : l = 1, . . . , L} to the ECSP. For each UE, the ECSP estimates the channel
{ĥlk : l = 1, . . . , L, k = 1, . . . , K} using received pilot signals and channel statistics obtained
from CSPs. Then the ECSP selects combining weights vk ∈ CNL for UEk based on the collective
channel estimate ĥk = [ĥ1k, . . . , ĥLk].

The MMSE combining vector for UEk that maximises the instantaneous SINR minimises the
mean-squared error MSEk = E{|sk − vH

k y|2 | ĥk}, see [18] for details, is given by

vk = pk

(
K∑
i=1

pi

(
ĥiĥ

H

i + Ci

)
+ σ2INL

)−1

ĥk, (2.7)

where pk is the transmission power for UEk, σ2 is the variance of the thermal noise, and INL is
the identity matrix of size N × L. The maximum SINR is given by

SINR(4)
k =pkĥ

H

k

(
K∑

i=1,i ̸=k

piĥiĥ
H

i +
K∑
i=1

piCi+σ2INL

)−1

ĥk.
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Using level 4 combining, an achievable SE of UE k is shown to be

SE(4)
k =

(
1− τP

τc

)
E
{
log2

(
1 + SINR(4)

k

)}
, (2.8)

where τc it the length of the channel coherence interval and τP is the pilot sequence length.
The level 4 provides the best performance, an upper bound, in terms of SE, equivalently SINR.
However the computational complexity is very high since it requires first an inverse of NL×NL
matrix and then a matrix-vector multiplication. The other challenge is the requirement on front-
haul connection capacity, i.e., the number of signals and measurements that are required to send
from all CSPss to ECSP in order to calculate the combining weights.

2.2.2.2 Level 1-3: Local Processing and Centralised Combining

Level 1-3 are the methods based on local processing and centralised combining. Instead of
sending the N -dimensional vector {yl : l = 1, . . . , L} and channel estimates to the ECSP, each
CSP pre-processes its signals by computing the local estimates of the data signals that are then
passed to the ECSP for further combining. The local estimate for UEk at SPl is s̆kl = vH

lkyl where
the local MMSE combining vector is

vlk = pk

(
K∑
i=1

pi

(
ĥliĥ

H

li + Cli

)
+ σ2IN

)−1

ĥlk. (2.9)

The maximum value of SINR with the local MMSE combining (2.9) is given by

SINR(1)
kl =pkĥ

H

lk

(
K∑

i=1,i ̸=k

piĥliĥ
H

li +
K∑
i=1

piCli+σ2IN

)−1

ĥlk.

Different from level 4, SPl uses only its own local channel estimates {ĥlk : k = 1, . . . , K} for
calculating vlk. The local estimates {s̆kl : l = 1, . . . , L} are then sent to the ECSP where they
are combined in three different methods, which are defined in [15]:

Level 1: ŝk = argmax
s̆kl

SINR(1)
kl , l = 1, . . . , L

Level 2: ŝk =
1
L

∑L
l=1 s̆kl

Level 3: ŝk =
∑L

l=1 a
∗
lks̆kl

The weighting coefficients alk at level 3 can be obtained based on the channel statistics, see [15]
for more details.

2.2.3 Decentralised Processing and Combining

In [19] a decentralised processing and combining method that utilises a sub-set of CSPs for
processing of uplink signals was proposed. Instead of sending all signals or estimated signals to
the ECSP to determine the combining vector, a sub-set of CSPs, L ⊂ {1, . . . , L}, is selected as
serving CSPs for each UE and one of the CSPs in the sub-set is assigned to be the aggregating
CSP for this UE. We call this the ”subset” or ”subset method”. The selection of the serving CSPs
can be based on the path-gain between CSPs and UE. The number of serving CSPs to form
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the subset is a trade-off between the complexity and performance. In general, we denote the
subset by sub-ℓ when ℓ out of L CSPs are selected. Sub-1 has a single serving CSP, which
turns D-MIMO into “small cell”. We can aggregate the number of serving CSPs depending on
the front-haul and performance requirement, from two serving CSPs, sub-2, and all the way up
to include all CSPs in the D-MIMO network, sub-L.

Figure 2.6: Subset that consists of three CSPs for each UE.

Figure 2.7: Different topologies for CSPs connection to ECSP.

In Fig. 2.6, we illustrate one example of a subset with ℓ = 3 serving CSPs, sub-3. In this example,
each UE picks three best CSPs as serving CSPs based on the path-gain to CSPs. As shown
in this case the serving CSPs for UE1 is LUE1 = {4, 5, 8} where SP5 is assigned to be the
aggregating CSP where antenna signals from other two SP4 and SP8 are collected. The serving
CSPs for UE2 is LUE2 = {3, 6, 7} where SP6 is assigned to be the aggregating CSP and the
serving CSPs for UE3 is LUE3 = {8, 9, 11} where SP9 is assigned to be the aggregating CSP.

This enables the front-haul communication to send information to different aggregation CSPs, us-
ing different sections of the front-haul, all at the same time. It further enables parallel processing
of uplink signals from multiple UEs in different aggregating CSPs. The processing for each UE is
also significantly reduced when a sub-set of CSPs are used for reception compared to the full set
of CSPs.

2.2.4 Deployment Model and Simulation Parameters

In this section, we evaluate the subset method by deploying a D-MIMO network in a 100×100 m2

area as shown in Fig. 2.8. A number of service points (CSPs), denoted by L, are deployed on a
square grid. The propagation of a reference case is show in Fig. 2.8 when L = 36. Each CSP
is equipped with a number of antenna elements, from single antenna element, i.e. N = 1, to
multiple antenna elements e.g. N = 16. To be able to compare the level 1-4 methods given
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by [15] and our decentralised subset method we use the same channel propagation model and
estimation as described in [15], which was based on 3GPP Urban Microcell model in [20]. Except
for the size of simulation area, we keep the same parameters used by [15]. The system simulation
parameters are summarised in Table 2.4.

Figure 2.8: Path-gain in a D-MIMO network with 36 CSPs.

Table 2.4: System parameters used for downlink performance evaluations

Carrier frequency 2 GHz
Bandwidth 20 MHz
Duplex Symmetric TDD Number of data samples for UL and DL

τD = τC − τP
Simulation area 100× 100 m2

Wrap-around 8 twin areas
Channel Assumptions Perfect reciprocity, Block fading, Independent Rayleigh

fading Correlated log-normal shadow fading, σsh = 4dB,
9 m correlation distance 3GPP Urban Microcell path-loss
model

Coherence time τC = 200 samples
Channel estimation τP uplink pilots (no downlink pilots), random pilot alloca-

tion
UE, CSP height 1.5 m and 10 m respectively
UE and CSP power 100 mW
Antenna power budget 50 mW (4 antenna elements per CSP)
Noise power -94 dBm

2.2.5 Numerical Comparisons

The performance metrics used is the achievable SE [bit/s/Hz] based on the Shannon formula,
which is the same as it was used in [15] [16]. The evaluation of the performance with four-
level centralised combining method was done by the code provided by [15]. The evaluation of
the performance with decentralised combining method proposed in this section was done by the
square-root implementation of the Kalman Filter. Each simulation result contains 1000 random
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Figure 2.9: Centralised and decentralised combining methods using MMSE.

Figure 2.10: SE@10th and 90th percentile with different combining methods using MMSE and
maximum ratio combining (MRC).

Figure 2.11: Comparing subsets with level 4.
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channel realisations and 8000 random UEs samples. When comparing the results in the sub-
sections we use solid curves for four levels centralised combining and dashed curves for the
subsets method whenever they are presented in the same figure.

2.2.5.1 Centralised vs. Decentralised Combining

To compare the simulation results for centralised and decentralised combining methods, a refer-
ence case is created where L = 36 CSPs were deployed as a grid in an area of 100 × 100m2,
each CSP is equipped with N = 4 antennas and K = 20 UEs are randomly generated in the
area.

In Fig. 2.9 we show the cumulative distribution function (CDF) of the SE when different combining
methods are applied: the four-level centralised combing methods are the solid curves, from level 1
to level 4, and decentralised subset method are the dashed curves, from sub-1 to sub-36. We can
see that the performance upper bound of fully centralised level 4 is reached by decentralised sub-
36 when all L = 36 CSPs are added into the subset, which numerically verifies the Proposition 2.

Fig. 2.10 shows the 10th and 90th percentile of the CDFs in Fig. 2.9 as a function of combining
methods: four levels on the left, decreasing from level 4 to level 1, and moving towards the right
the decentralised combining method with increasing number of serving CSPs in the subset from
sub-1 to sub-36 on x-axis. Both MMSE (solid) and MRC (doted) were used. The first conclusion
that we get is that the MMSE combing outperforms the MRC. In the rest of sections we show only
the results with MMSE combining. The second observation is that the performance upper bound
of level 4 can be reached adding more serving CSPs in the subset, the more serving CSPs the
better performance, however diminish return. We observed that a subset with 16 CSPs, sub-16,
is almost as good as level 4, sub-4 outperforms level 1-3 and sub-2 is almost as good as level 3.

In [21] we proofed theoretically that applying the Kalman filter, the performance upper bound can
be approached by incrementing the subset stepwise. Fig. 2.11 shows numerically how to reach
the performance upper bound by using different number of serving CSPs in the subset. The
upper bound performance of level 4, shown as 100% of the performance, is reached by sub-36.
Considering adding more CSPs into the subset gives little gain at high costs not only the traffic
load at front-haul but also the processing delay due to the computation complexity, see Sec-
tion 2.3.2, we can reduce performance requirement by setting a performance target, for example
to reach 95% of the performance upper bound by using 16 serving CSPs, sub-16, which consists
of 40% of CSPs; If sub-16 is considered to cause too much traffic load at front-haul we can re-
duce the performance target to reach for example 85% of the performance upper bound using
sub-8 only 20% of CSPs; Or even lower to reach 65% of the performance upper bound by using
only 4 serving CSPs, sub-4, that is 10% of CSPs; So decentralised subset combing provides
another advantage: it is very flexible and easy to select the trade-off between the complexity and
performance.

2.2.5.2 Sweep the Number of Deployed CSPs

The number of CSPs deployed in the area can be varied. Besides the reference case shown in
Fig. 2.8 with L = 36, we show the propagation of grid deployment with L = 4 and L = 16 are
shown in Fig. 2.12(a) and (b).

In this sub-section we show the performance when the number of CSPs deployed in the area is
varied from L = 1 to L = 100 while keeping the other parameters as the reference case, N = 4,
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K = 20 and τP = 15. From radio propagation point of view, the more CSPs the higher the
path-gain to the best CSP the UEs are likely to have.

(a) A deployment with four CSPs. (b) A deployment with 16 CSPs.

Figure 2.12: Propagation path-gain in a D-MIMO network.

(a) (b)

Figure 2.13: SE@10th percentile by sweeping L, MMSE combining.

In Fig. 2.13(a) we show the 10th percentile of SE as a function of the number of deployed CSPs, L,
when we double the number of CSPs. We can see that sub-1 is the lower bound which is com-
pletely distributed using local processing without any information from other CSPs. Level 1 is
slightly better than sub-1 as level 1 requires each CSP to forward local estimates of the signal to
the ECSP for centralised combining. It relies on the ECSP to find the maximum value of SINR
or SE among all CSPs. Hence the difference is that sub-1 captures the slow fading while level 1
captures the fast fading and interference. Level 4 provides the upper bound, which is the most
complexity in terms of the implementation. Sub-16 gets very close to level 4 in the performance
and the implementation is much simpler with Kalman Filter. The sub-2 requires only aggregating
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two CSPs and gets quite close to the performance of level 3. Fig. 2.13(b) shows the 10th percentile
of SE as a function of all levels and subsets. Each curve is a deployment with the number of L
CSPs. Note that the number of CSPs in the subset cannot exceed the total number of CSPL.
We can see that the more deployed CSPs the better the performance, however with diminishing
return.

2.2.5.3 Sweep the Number of Antenna Elements at Each CSP

We study the performance when the number of antenna elements at each CSP is varied from
N = 1 to N = 16 while keeping the other parameters as the reference case, L = 36, K = 20
and τP = 15. Fig. 2.14 shows the 10th percentile of SE as a function of the number of antenna
elements at each CSP, N . The sub-4 outperforms all level 1-3 and sub-2 outperforms level 1 and
is almost as good as level 3 when N ≥ 8. In Fig. 2.15 we group the results for each number
of antenna elements in the bar charts and make it easier to compare four levels and 6 selected
subsets for each setting of antenna elements. As a general rule we can see that the more antenna
elements we have the better performance we get. It is also interesting to note that for N = 16
the performance of Level 1 combining is better than for Level 2 combining (which is not the case
for N = 8, N = 4, N = 2, N = 1). Level 1 combining implies calculating the SINR at each CSP
and then selecting the maximum value out of all N such estimates. Level 2 combining implies
taking a linear average of local symbol estimates calculated at each CSP, see [15]. In these
experiments, the performance for Level 1 combining (purple bars in Fig. 2.15) increase more
rapidly as the number of CSP in the subset increase and for N=16 Level 1 combining becomes
better than Level 2 combining. The results represent the 10th of the worst UE. In this setup, the
poor performance is due to the reuse of pilots, increase the number of antennas doesn’t help to
improve their performance.

2.2.5.4 Sweep the Number of UEs in the Simulation Area

We further investigate the performance when the number of UEs is varied from K = 1 to K = 40
while keeping the other parameters as the reference case, N = 4, L = 36 and τP = 15. Fig. 2.16
shows the 10th percentile of SE as a function of the number of UEs, K. In the case of a single UE,
K = 1, there is no interference and no pilot contamination hence the highest performance for all
levels and subsets is achieved. When the number of UEs increases to τP = 15, the interference
increases without pilot contamination, sub-2 outperforms level 1-3. When the number of UEs
becomes large than the number of pilots τP , sub-4 outperforms level 1-3.

2.2.5.5 Sweep the Number of Pilot Symbols

We show the performance when the number of pilot symbols is varied from τP = 1 to τP = 50
while keeping the other parameters as the reference case, N = 4, L = 36 and K = 20. Fig. 2.17
shows the 10th percentile of SE as a function of the number of UEs, τP . Since we have 20 UEs
there are pilot contaminations for all τP < 20. Once again, we see that sub-4 outperforms level 1-
3.
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Figure 2.14: SE@10th percentile by sweeping N .

Figure 2.15: SE@10th percentile by sweeping N .
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Figure 2.16: SE@10th percentile by sweeping K, where τP = 15.

Figure 2.17: SE@10th percentile by sweeping N , where K = 20.
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2.3 Uplink D-MIMO Processing using Kalman Filter Combin-
ing

In Section 2.2 different uplink D-MIMO processing and combing methods were introduced and
evaluated, from the fully centralised method to distributed subset methods. The fully centralised
approach, which is denoted level 4 implementation, uses global MMSE combining, and hence it
provides the best performance in terms of the SE and equivalently SINR. However, the level 4
implementation is difficult to realise in practice, due to the very high front-haul connection re-
quirement and computational complexity at the D-MIMO ECSP. To reduce the computational
complexity at the ECSP, three alternative methods, denoted level 1-3, first process the signals
at each CSP based on local information, and then pass them to the ECSP for final combining
and decoding. Level 1-3 do reduce the front-haul requirement, however, these methods still re-
quire centralised combining, which has an impact on the processing latency. The performance of
level 1-3 reaches below 40% of the upper bound performance provided by level 4. To find the pos-
sibility to reach the upper bound performance, we propose to use a decentralised partial level-4
method by defining a subset of CSPs for each UE. The subset can be defined from one CSP to all
CSPs that are connected to a ECSP. When the subset consists of only one CSP, which we call
sub-1, it turns D-MIMO network into a “small cell” network; when the subset consists of all CSPs
connected to the ECSP, it is equivalent to the level 4. The subset combing method introduced
Section 2.2 can be implemented by using MMSE, it can also be implemented by using the Kalman
filter [22]. The advantage of using the Kalman filter is that it provides the combining vector that
minimises the estimation error (MSE) at each step of iteration, from a subset of one CSP to a
subset of all CSPs. In this section we first describe the Kalman filter in Section 2.3.1. We analyse
and compare the implementation requirements when different combing methods are applied in
Section 2.3.2. Finally we evaluate and make numerical comparisons of different implementations
in in Section 2.3.3.

2.3.1 Kalman Filtering for Decentralised Combining

In [19], a decentralised processing and combining method was proposed. Instead of sending all
signals and statistical parameters to the ECSP for centralised combining they are sent to prede-
fined aggregating CSPs, or local process unit (LPU) for decentralised processing and combining
first and then forwarded to the ECSP for final decoding. A closely related method on decentralised
MMSE combining for signal detection was developed earlier in [23]. The predefined aggregating
CSP consists of a subset of CSPs, which is selected for each UE, L ⊂ {1, . . . , L}.

The implementation complexity of the UL combining methods is dominated by the calculation of
the inverse of the covariance matrix. We propose to use the square-root implementation of the
Kalman filter [24] for decentralised processing and combining at aggregating CSPs. The square-
root implementation is known to be more numerically sound when inverting the covariance matrix,
as it always assures the covariance matrix to be symmetric and positive semi-definite.

The Kalman filter is used to estimate the data signal vector s given yl in (2.6) at any SPl as

ŝ = ŝ0 +K (yl −Hlŝ0) , (2.10)

where ŝ0 = 0 and P0 = diag(p1, . . . , pK) are initial state vector and covariance matrix. The
Kalman filter gain K, a matrix of size K×N , provides the optimal solution in terms of the minimum
mean-square error MSE = E{|s −Kyl|2}.
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Proposition 1. The combining vectors for all UEs can be calculated by the Kalman filter gain K,
which is equivalent to the MMSE combining vector given by (2.7).

The MMSE combining vector vk given by (2.7) assumes that the channel Hl is unknown, but the
estimate of the channel can be done locally at each CSP based on known pilot signals trans-
mitted from UEs. Let Ĥl = [ĥl1, . . . , ĥlK ] be the estimate of channel Hl, see [18] for a detailed
description of channel estimation. Applying the estimation of the channel, the estimate of the
state vector (2.10) can then be written as

ŝ = ŝ0 +K(yl − Ĥlŝ0), l = 1, . . . , L (2.11)

and the covariance matrix becomes

P = P0 − P0Ĥ
H
l (ĤlP0Ĥ

H
l +Rl)

−1ĤlP0. (2.12)

The Kalman filter gain is given by

K = P0Ĥ
H
l (ĤlP0Ĥ

H
l +Rl)

−1, (2.13)

where Rl is the covariance matrix including both the correlation matrix of the channel estimation
error and receiver noise, Rl =

∑K
k=1 pkClk + σ2I. The equation (2.13) provides the combining

vectors that the minimises the MSE for all UEs, KT = [v1 · · · vK ]. Thus, the combining vector for
UEk, vk, is the same as it is given in (2.7).

Remark 1. In the square-root implementation of the Kalman filter, the covariance matrix is re-
placed by its square-root, S, such that P = SST .

Corollary 1. The performance measure SINR for each UEk is equivalent to the inverse of the
covariance matrix given by the Kalman filter

SINRk =
pk
Pkk

− 1, (2.14)

where pk is the power of UEk use for transmitting data signals and Pkk is the kth diagonal element
of the covariance matrix P .

The SINR represents the ratio between desired signal power and undesired total signal power,
which is often called the interference and noise. For UEk, it can be rewritten as

SINRk =
sk

Ak − sk
=

sk
Ak

I − sk
Ak

,

where sk is desired signal power and Ak is the total sum of received signal power. The ratio of
desired signal to the total sum is a part of the covariance matrix as

sk
Ak

= pkĥ
H

lk(ĤlP0Ĥ
H
l +Rl)

−1ĥlk = vkĥlk.

The covariance matrix P in (2.12) has two parts, the initial value P0 and the updating part, which
can be written as KĤlP0 by using K in (2.13). Hence (2.12) can be written as

P = P0 −KĤlP0 or KĤl = (P0 − P )P−1
0 .

Hence
vkĥlk = uT

kKĤluk = uT
k (P0 − P )P−1

0 uk
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where uT
k = [0 . . . 1 . . . 0] is a vector with 1 at k

th
element.

SINRk =

sk
Ak

1− sk
Ak

=
uT
k (P0 − P )P−1

0 uk

1− uT
k (P0 − P )P−1

0 uk

=
pk
Pkk

− 1.

We have introduced the Kalman filter to estimate the data signals by (2.11)-(2.13). They can
be applied to any CSPs locally. They can also be applied to any aggregating CSPs or local
processing unit (LPU), such as the subset, sub-l, or at ECSP where signals from other CSPs
are collected as shown in Fig. 2.7. Furthermore, when CSPs are connected sequentially where
one CSP forwards the estimates to another CSP, the update of the state vector (2.11) can be
generalised with the proposition below.

Proposition 2. The estimate of data signal at any aggregating CSP can be obtained by the
estimation of the state vector from the Kalman filter whenever new measurement from additional
SPl becomes available.

Let L be the subset consisting of ℓ CSPs, and the new measurement from additional SPl be
yl, l ̸∈ L. The subset of ℓ CSPs is denoted by sub-ℓ. The new subset L ∪ l has ℓ + 1 CSPs,
sub-(ℓ+ 1). Applying the Kalman filter, the estimate of the state vector is given by

ŝ(L ∪ l) = ŝ(L) +K(yl − Ĥl ŝ(L)) (2.15)

and the covariance matrix is given by

P (L ∪ l)=P (L)−P (L)ĤH
l (ĤlP (L)ĤH

l +Rl)
−1ĤlP (L). (2.16)

The Kalman filter gain that minimises the mean-square errors between the state and estimated
state is given by

K = P (L)ĤH
l

(
ĤlP (L)ĤH

l +Rl

)−1

. (2.17)

The equation (2.15) updates the state vector from ŝ(L) to ŝ(L ∪ l) with the new measurement
yl at the aggregating CSP and the equation (2.16) updates the covariance matrix from P (L) to
P (L∪ l) when the SPl is added to the subset. The Kalman filter gain (2.17) updates the estimate
of the state vector which is the new combining weights that minimises the MSE for all UEs.

Corollary 2. The best performance in terms of SINR or equivalently SE is achieved by sub-L
when all CSPs in the same cluster are added to the subset L.

By using the Kalman filter, the estimate of the state vector is updated by (2.10) when a new CSP
is added into the subset. Each new CSP brings the new measurement into the Kalman filter
and reduces the estimation error hence the corresponding covariance matrix is decreased. Each
update increases SINR as SINR is the inverse of the covariance matrix as shown in Corollay 1.
Hence the best performance in terms of SINR or equivalently SE is achieved by sub-L when all
CSP in the same cluster are added to the subset L.

Remark 2. If the new measurements in Proposition 2 are collected from several CSPs, l1, . . . , lr ̸∈
L. The proposition is still valid by defining Lnew = {l1, . . . , lr} and replacing l by Lnew, the new
subset L ∪ Lnew has thus ℓ+ r CSPs and is denoted as sub-(ℓ+ r).

The advantage of using the Kalman filter in this context is that the upper bound performance
by the fully centralised level 4 can be reached by sub-L. However, the processing of sub-L can
be done either centralised or decentralised at any aggregating CSPs by using (2.11)-(2.13); it
can also be done by distributing the processing at aggregating CSPs and push the estimate to
another CSP. The aggregating can also be done when CSPs are connected in parallel.
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Proposition 3. The Kalman filter provides equivalent results regardless if the signals are col-
lected and processed centralised at ECSP; or decentralised at an aggregating CSP; or distributed
at each of the serving CSPs.

Since the Kalman filter minimises the estimation error between the signal and estimate of the
signal based on the available inputs and measurements at current stage, the estimate of the
signal contains the same amount of information as what is available to the Kalman filter at any
subset. They can be forwarded to another CSP or aggregating CSP without loss of the information
of that subset.

Remark 3. With Proposition 3, the Kalman filter can be applied in any topology of CSP, e.g. star,
serial, parallel, grid connections. The estimate of data signal at any aggregating CSP is the same
whether new measurements are collected from several CSPs or sequentially aggregated from
the first CSP to the aggregating CSP.

The Kalman filter processing performed in a service point within a RW thus consists of two slightly
different Kalman filter operations, as shown in Fig. 2.18. The first type of Kalman filter (type
1) operation combines symbol estimates from different branches of the RW, and the second
type of Kalman filter (type 2) operation updates the symbol estimate using the antenna signal
observations.

Figure 2.18: Example of a CSP within a RW performing two types of Kalman filter operations.

2.3.2 Implementation requirements

We analyse two important aspects that nees to be considered when it comes to the implementa-
tion of a D-MIMO system.

Firstly, we analyse the front-haul connection capacity requirement, i.e. the number of signals and
measurements that are required to send from CSPs to ECSP in order to calculate the combining
weights. The four levels combining method using MMSE requires to collect signals yl or the
processed signals s̆kl at ECSP to be able to calculate the combining vector as described in
Section 2.2.2. In contrast, the decentralised subset method based on the Kalman filter has the
flexibility to estimate the signals and aggregating the estimated signal, sequentially or partially at
aggregating CSPs or ECSP, as shown in Fig. 2.7.

The second aspect to consider is the time delay, i.e. how much time that is required for pro-
cessing and estimating the signals. The time delay depends on computational processing time
and the time for collecting the signals. Here, the highest computational demanding operation is
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Table 2.5: The front-haul capacity requirement.

signals total signals covariance total elements
level 4 yl τCLN Rlk LKN2/2

level 3 s̆kl (τC − τP )LK alk LK + L2K2+LK
2

level 1-2 s̆kl (τC − τP )LK - -
subset ŝ(L) (τC − τP )LK P (L) LK2/2

to calculate the inverse of the covariance matrix and the sizes or the number of elements in the
covariance matrix determines the computational complexity. The fully centralised level 4 method
requires collecting all signals and estimating a full-sized covariance matrix at ECSP before the
processing can start, the number of operations is in the order of ∼ (NL)3, as shown in Fig. 2.19,
bars in red. Level 4 complexity increases rapidly with the number of CSPs hence has very high
requirement on the hardware processing capabilities. However it has very low requirement on
the CSPs since CSPs simply push everything to the ECSP. Level 4 is difficult to realise in prac-
tise partly because the time delay for collecting all measurements and partly high computational
complexity to invert the very large covariance matrices when number of CSP is large. Level 1-3
process the signals at locally at each CSP, which put some requirement on the processor at
CSPs. The number of operations is in the order of ∼ NL3, as show in Fig. 2.19, bars in yellow.
However, the combining weights using level 1-3 are calculated at the ECSP which still requires to
collect processed signals from all CSPs. By using the Kalman filter in the decentralised subset
combining method, the signals can be processed locally at each CSP or collected at aggregating
CSPs. The aggregating CSPs that are not overlapping can process the signals in parallel, which
reduces the delay for processing and collecting the processed signals. However, the aggregating
CSPs have certain requirements on processing capabilities. With the square-root implementation
of the Kalman filter, see Remark 1, the number of operations is in the order of ∼ NLK(N +K),
as shown in Fig. 2.19, bars purple and green for K = 5 and K = 10 respectively.

In Table 2.5, we summarise the front-haul capacity requirements. The column signals can be
the received signals or the estimated signals at each CSP depending on the implementation
methods. The column total signals contains the total sum of signals sent from of all CSPs to the
ECSP for final decoding.

Corollary 3. Applying the Kalman filter implementation, the required hardware capacity can be
gathered at an ECSP or distributed among CSPs.

In Proposition 3 it is shown that the Kalman filter provides equivalent results whether the signals
are collected at an ECSP or at CSPs. This implies that the required hardware capacity to process
the signals has different requirements whether the signals are processed centralised at ECSP or
distributed at CSPs. The Kalman filter implementation enables parallelisation of the processing
to many less capable processors at the distributed CSPs.

We know that the highest computational demanding task is to calculate the inverse of the covari-
ance matrix. The size and number of elements of the covariance matrix determine the computa-
tional complexity. We show in Fig. 2.19 the computational complexity in terms of the number of
operations required for calculating the inverse of the covariance matrix. The complexity increases
with the number of CSPs, L, and antennas elements, N , For each number of combining CSPs,
we show 4 bars: the two bars from the left are for centralised combining and two bars on the right
are for decentralised Kalman filter combining. Comparing red and green bars, for example level
4 and sub-36, they have the same performance as we shown earlier, but Kalman filter combining
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Figure 2.19: Calculation complexity

has a lower complexity when combining more than 4 CSPs. Compared to level 1-3, bars in yellow,
Kalman filter combining has a superior performance with some increase in number of operations,
but the Kalman filter can process the data in parallel and therefore reduce the time delay.

2.3.3 Numerical Comparisons

We evaluate the Kalman filter implementation by using the same deployment of a D-MIMO net-
work in a 100 × 100 m2 area as shown in Fig. 2.8, where a number of CSPs, denoted by L,
are deployed on a square grid. A reference case is created where L = 36 CSPs, each CSP is
equipped with N = 4 antenna elements and K = 20 UEs are randomly generated in the area.
To be able to compare the work done in [15] and our implementations with Kalman Filter, we use
the same channel propagation model and estimation as described in [15], which was based on
3GPP Urban Microcell model in [20], the pathgain is shown in Fig. 2.8. Except for the size of
simulation area, we kept the most of parameters used by [15]. The system simulation parameters
are summarised in Table 2.4.

The performance metrics used for comparing different uplink combining methods is the achiev-
able SE [bit/s/Hz]. For the centralised combining methods, the simulations are based on the
Matlab code provided by [15]. For the decentralised combining methods, two implementations
were used in the simulations, one implementation based on MMSE using QR factorisation; the
other one is the square-root implementation of the Kalman filter as described in section 2.3.1.
Each simulation contains 1000 random channel realisations and 8000 random UEs samples.
More results for varying the parameters can be found in [19].

In Fig. 2.20 the CDF of the four-levels centralised combing methods (level 4 to level 1), solid
curves, are compared with decentralised subset method, dashed curves, sub-1 up to sub-36.
We can see that level 4 is equivalent to sub-36 when all L CSPs are added into the subset, which
numerically verifies the Corollary 2.

Fig. 2.21 shows the 10th and 90th percentile of SE as a function of decreasing in levels and in-
creasing of CSPs in the subset on x-axis. The results from two implementations are shown, the
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Figure 2.20: Centralised and decentralised combining methods.

Figure 2.21: MMSE and Kalman Filter implementations.
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blue curves based on MMSE with QR factorisation and the red curves based on the Kalman Filter.
They are slightly different due to the different random seeds. Two conclusions can be drawn from
the results: Firstly, the two implementations (MMSE with QR factorisation) give the same results;
Secondly, sub-16 is almost as good as level 4 and sub-4 performs on par with level 1-3.

2.4 Conclusions

In Section 2.1, we discussed the different types of clock sources to synchronize the multiple CSPs
deployed to serve the UEs in a RW architecture. One central clock equipped with a PLL located at
a physical location is shared by different CSPs using coaxial cable connections, or each CSP can
be equipped with a local PLL to generate the LO signals. For the latter case, a distributed PPS
signal is shared to synchronize the PLL outputs at each CSP to achieve coherence between all
LOs. In addition, we also explained another architecture which shares a low frequency clock that
can be controlled over an Ethernet connection. We also discussed in detail about the scalability
and complexities associated with each clock architecture. In addition, we briefly elucidated on a
different type of architecture where each CSP can have its own clock source which can be used
to synchronize multiple CSPs, either by an Ethernet connection, or OTA using an algorithm such
as Beamsync.

In Section 2.2, we evaluate a decentralised subset method for the receiver combining in a D-
MIMO network. The sub-set combining method is scalable in the sense that the more CSPs
you deploy the more distributed processing resources and the more front-haul segments you
get. This enables simultaneous and parallel forwarding of antenna data over different front-haul
segments. It also enables simultaneous and parallel processing of UE uplink signals in different
aggregation CSPs. The proposed method provides both good performance and low complexity
compared to single CSP decoding (Level 1) or sequential CSP aggregation (Level 2 or Level
3). The method approaches the performance of fully centralised processing (Level 4) as the
size of the cooperating set expands. Diminishing returns are noticed once the CSPs closest to
the UE are included in the sub-set, which implies that for most UEs a small sub-set will provide
sufficient performance. This ensures that only the most relevant antenna elements in the D-MIMO
system are processed for each UE. This leads to less demanding processing (e.g., smaller matrix
inversions) and less forwarding of information over the front-haul, resulting in reduced power
consumption and reduced hardware cost.

Section 2.3 introduces the Kalman filter to estimate the uplink signals in a D-MIMO network. The
Kalman filter provides an optimal estimate by minimising the estimation error. It can be applied to
both centralised and decentralised processing and combining. When applied to the decentralised
combining methods, it provides the flexibility to aggregate the estimates in different topologies,
star, serial, parallel or grid. Applying the Kalman filter, the performance upper bound can be
approached by incrementing the subset size stepwise. In the studied simulation scenario, where
36 CSPs are deployed in the D-MIMO network, we can reach 85% of the upper bound by including
only 20% of total CSPs in the subset, and reach 95% of the upper bound by a subset with 16
CSPs, sub-16. With a Kalman filter implementation, it is simple to decide the most cost efficient
trade-off between performance and implementation cost.
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Chapter 3

Processing elements for efficient
execution of distributed processing

In the previous chapter, a square root implementation of a fixed state Kalman filter for uplink sig-
nal estimation in a cell-free network has been proposed. As mentioned, the contact service points
(CSPs) exchange information in the form of a matrix per coherence block and a vector for each
received sample with each other to assist in the user equipments (UEs)’ data estimation. How-
ever, it is assumed that the front-haul link between the CSPs is of infinite capacity. In a real-life
network, this assumption is not the case. In this chapter, the complexity and hardware imple-
mentation of the algorithm in a cell-free network with daisy-chain topology with limited capacity
front-haul links is considered where each transmitted scalar on the front-haul link between two
CSPs should be quantized to a finite bit precision. In the following sections, we first overview the
sequential signal estimation algorithms between the CSPs and then evaluate their computational
complexity and numerical stability under the realistic assumption of limited-bandwidth front-haul
links.

It is worth mentioning that in this chapter, the two recursive algorithms implemented sequen-
tially in the CSPs are the same as two different implementations of fixed-state Kalman filtering
introduced in the previous chapter.

3.1 Problem statement

We consider uplink transmission in a cell-free network consisting of K single antenna UEs, and L
CSPs, each having N antennas. Assuming a Massive MIMO scenario, NL ≫ K. Using OFDM,
the received signal vector at CSP l can be modeled as follows:

yl = Hls+ nl. (3.1)

In (3.1), yl is the N × 1 received vector at CSP l, Hl is the N × K channel matrix from all the
UEs to the antennas of CSP l, and nl is the additive noise vector nl ∼ N (0, σ2I). The columns
of the matrix Hl are complex normal random vectors with correlation matrices based on the
local scattering spatial correlation model in [18, Chapter 2]. The network-wide received vector,
noise vector and channel matrix can be represented as y = [yT

1 , . . .y
T
L ]

T , n = [nT
1 , . . .n

T
L]

T and
H = [HT

1 , . . .H
T
L]

T respectively. The network-wide received signal vector can be formulated as
follows:

y = Hs+ n. (3.2)
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Knowing that covariance matrix of n is E{nnH} = σ2I, we normalize (3.2) by σ:

y

σ
=

H

σ
s+ ñ, (3.3)

where ñ = n
σ

.

If we assume that the transmitted signals are zero mean and mutually uncorrelated, i.e. E{ssH} =
pIK , then we can map this prior knowledge to an additional equation as follows:

0 =
1√
p
s+w, (3.4)

where w is a random vector with i.i.d. unit variance elements, i.e. E{wwH} = IK .

Bringing the two equations (3.3) and (3.4) together, we have:

[
y
σ

0

]
=

[ H
σ
1√
p
I

]
s+

[
ñ
w

]
. (3.5)

3.2 Uplink signal estimation

To estimate UEs’ signals, we apply LS estimation to (3.5), i.e,

ŝ = argmin
s

∥y
σ
− H

σ
s∥2 + 1

p
∥s∥2

a
= argmin

s
∥y −Hs∥2 + σ2

p
∥s∥2,

(3.6)

where a comes from the fact that multiplying the objective function of an optimization problem with
a positive scalar does not change the optimal point. We do not consider the channel estimation
problem as it is out of the scope of this chapter. Hence, we assume that the channel matrix
is known exactly, which is possible in case of having a unique pilot per UE and high enough
transmission power during pilot transmission. The solution to the problem (3.6) is:

ŝ = (HHH+
σ2

p
IK)

−1HHy. (3.7)

The matrix Γ = (HHH + σ2

p
IK)

−1 is the inverse of the K × K regularized Gram matrix. The
solution defined in (3.7) is also referred to as the regularized zero-forcing (RZF) solution where
δ = σ2

p
acts as the regularization parameter to avoid singular matrix inversion. However, here this

regularization results from the inclusion of the prior knowledge of the UEs’ transmit power in the
system model in section 3.1.

Another way of solving the problem defined in (3.6) is based on QR decomposition of the regu-
larized channel matrix: [

H
σ√
p
IK

]
= Q

[
R

0NL×K

]
= Q̃R, (3.8)

where Q̃ = Q[:,1:K] (Subscript [:, 1 : K] means all the rows and the first K columns). Matrix Q
is an (NL + K) × (NL + K) orthogonal matrix, i.e. QHQ = I(NL+K) and the K × K upper
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triangular matrix R is the square root of the regularized channel matrix i.e.[
HH σ√

p
IK
] [ H

σ√
p
IK

]
= RHR. (3.9)

substituting (3.8) and (3.9) in (3.7), (3.7) leads to

ŝ = (R)−1Q̃H
[1:NL,:]y. (3.10)

In this chapter, QR decomposition is implemented using givens rotations.

Computing (3.7) and (3.10) in the CPU requires high local computational complexity. The K ×
K matrix inversion in (3.7) is of order O(K3) and (3.10) requires the computation of the QR
decomposition of the (NL+K)×K regularized channel matrix which is of order O(NLK2). In
order to avoid the high local computational complexity and high inter-connection data rate to the
CPU, we adhere to recursive algorithms and distributed implementations. Two possible recursive
algorithms that can be distributed easily are discussed below.

3.2.1 Standard recursive least squares (SRLS) algorithm

The SRLS is the recursive procedure to compute the solution defined in (3.7) based on the
recursive computation of the inverse regularized Gram matrix. The steps of the algorithm are
as follows:

• Once per coherence block, CSP l updates Γl based on its local channel matrix and Γl−1

that it receives from the previous CSP:

Γl = Γl−1 − Γl−1H
H
l (IN +HlΓl−1H

H
l )

−1HlΓ
H
l−1. (3.11)

• For each received data vector yl in one coherence block, CSP l updates the estimate of
the UEs’ signals based on the signal estimate vector ŝl−1 that it receives from the previous
CSP:

ŝl = ŝl−1 + ΓlH
H
l︸ ︷︷ ︸

K

(yl −Hlŝl−1). (3.12)

Note that K is the so-called Kalman gain introduced in the previous chapter.

• Then it sends Γl and ŝl to CSP l + 1.

It is worth mentioning that in any CSP in the sequence, the updated estimates of the UEs’ signals
are the solution to a smaller LS problem (i.e. LS problem with the observations from the first
antenna in the first CSP until the last antenna of the corresponding CSP).

3.2.2 QR decomposition based recursive least squares (QR-RLS) algo-
rithm

In QR-RLS, the information that is propagated from CSP l − 1 to CSP l is a vector of size K as
well as the square root matrix of size K×K. The steps of the recursive algorithm are summarized
as follows:

• Once per coherence block, CSP l computes the QR decomposition of matrix Ul =

[
Rl−1

Hl

]
= Q̃lRl, where Rl−1 is the square root matrix that it receives from the previous CSP.
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• For each received signal vector yl, CSP l computes the vector zl = Q̃H
l

[
zl−1

yl

]
where zl−1

is the K × 1 vector that it receives from previous CSP.

• Then it sends Rl and zl to CSP l + 1.

In the last CSP, ŝL = R−1
L zL is computed. As matrix RL is an upper triangular matrix, ŝL can be

computed (efficiently without matrix inverse) using back substitution.

Note that, similar to the SRLS, also for the QR-RLS, we can have the solution to the smaller LS
problem at any CSP.

3.2.3 Low precision implementation of the recursive algorithms

It is well known that the SRLS algorithm is susceptible to numerical instability in the case of a low-
precision implementation, quantizing the exchanged matrix and vector between two subsequent
CSPs with a low number of bits. On the other hand, QR-RLS is a square root variant of the SRLS,
which is well-known for its numerical stability in the case of a low precision implementation [25].
Unlike [23], in our simulation, we consider the link connecting two CSPs to have limited bandwidth.
Therefore, the data that needs to be exchanged between the CSPs in the two recursive algorithms
have to be quantized with a finite number of bits.

A uniform quantizer is considered using fixed-point arithmetic in MATLAB at each CSP. The
number of bits (word length) used to represent the quantization levels is W . As the range of the
elements of the matrices and vectors to be exchanged is unknown, we consider a scaled version
of the quantizer. Suppose that we want to quantize the elements of one particular matrix A. The
smallest and largest scalar in A (can be real or imaginary part of an element of A) are amin and
amax respectively. The range of the elements is defined as rd = amax−amin. So we have a range
rd, and we can have 2W quantization level to represent this range. Therefore, we build a scaled
quantizer with limits [amin, amax], the first level representing amin and the last level representing
amax and the remaining 2W − 2 levels partition the rd into 2W − 1 equal segments. The precision
or the distance between two subsequent quantization levels becomes

∆ = S =
rd

2W − 1
. (3.13)

For illustration purposes, a schematic figure of the scaled quantizer is shown in Fig. 3.1. Note
that the values for amin and amax can be positive or negative.

By scaling the quantizer based on the range of the matrix/vector that we want to quantize, we
make sure that overflow/underflow never appears.

It is also worth mentioning that CSP l also needs to send the parameters S and amin (or amax) to
CSP l + 1 so CSP l + 1 is able to reconstruct the data. We assume that these two parameters
are sent with high enough precision.

3.2.4 Initialization

The recursive algorithms defined in subsections 3.2.1 and 3.2.2 need initialization in the first
CSP. The choice of initialization affects the error propagation, especially in the low-precision
implementation of the SRLS. Let’s first consider the infinite precision implementation of the SRLS
algorithm. Assume that the matrix Γ0 in (3.11) is initialized as a scaled identity matrix, i.e. Γ0 =
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amin amax

Qmin

Qmax

∆

Figure 3.1: Scaled fixed-point quantizer. amin, amax, Qmin, Qmax ∈ R.

1
δ
IK . After iteration l in CSP l, the local UEs’ signals estimate, ŝl is the solution to the optimization

problem defined as:
ŝl = argmin

s
||y[1:Nl] −H([1:Nl],:)s||2 + δ||s||2. (3.14)

Based on (3.6) and (3.14), we would have chosen δ = σ2

p
in the infinite precision implementa-

tion which can be a small number. However, in a finite precision implementation, selecting an
extremely small δ may make the exchanged matrices among CSPs ill-conditioned, which may
result in early divergence of the SRLS algorithm. On the other hand, selecting an extremely large
δ biases the sequential refinement of the UEs’ signals estimate.

Another way of looking at the different choices of δ is through its possible effect on the range of
the exchanged matrices between CSPs. Selecting a small δ makes the range of the exchanged
data large and, as a consequence, lowers the precision of the quantization. This, in turn, results
in the early divergence of the SRLS algorithm.

Based on the discussion in the previous paragraph, we may not be able to initialize the SRLS
algorithm with Γ0 =

p
σ2 I. In this case, we initialize the Γ0 =

1
δ
I with a large enough value of δ and

then in the last CSP, after updating the inverse of the regularized Gram matrix to the ΓL based on
the local channel matrix, we add two extra processing steps which are a so-called down-dating
operation and updating based on prior knowledge to convert the regularization parameter from δ
to σ2

p
. We refer to [26] for more information on the down-dating operation in the RLS algorithm. As

it is also seen in the simulation section, the down-dating operation can be numerically unstable,
especially for extremely large δ.

As for the QR-RLS algorithm, it seems that QR-RLS is not sensitive to the choice of initialization

owing to its inherent numerical stability, hence for QR-RLS, we can initialize R0 =
√

σ2

p
IK in the

first CSP.

3.3 Simulation results

This section provides the simulation results for a cell-free network with a daisy-chain topology.
Unless otherwise stated, we assume that there are L = 25 CSPs, each having N = 4 antennas
serving K = 5 UEs. We consider the path loss (in dB) model of an urban microcell with 2GHz
carrier frequency [20]:

PL = C − α10 log10
dkl
1m

. (3.15)
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The constant value C is set to −30.5dB and it is the path loss between CSP l and UE k at the
distance dkl = 1 meter. The transmit power of the UEs is p = 20dBm and receiver noise power is
σ2 = −85dBm. The performance metric considered is the squared error between the transmitted
signal by a UE and its estimate, averaged over UEs, samples in one coherence block, different
coherence blocks and different locations of the UEs.

The finite precision recursive algorithms are compared against the infinite-precision central RZF
solution in (3.7).
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Figure 3.2: Average squared error in CSPs, L = 25, N = 4, K = 5, W = 32.

Fig. 3.2 shows the performance of the two recursive algorithms using a 32 bit scaled quantizer.
As observed, SRLS (with a small enough δ) has the same performance as QR-RLS.

However, Fig. 3.3 shows that by decreasing the precision to 16 bits, SRLS diverges in the case of
small δ. The smaller the δ, the earlier the divergence happens.

In Fig. 3.4, the number of UEs is increased to K = 15, but the quantization word length remains
the same as in Fig. 3.3. We observe that assuming different values for δ, the SRLS starts di-
verging earlier compared to the case of K = 5. By increasing the number of UEs, the condition
number of the inverse regularized Gram matrix at each CSP increases, which will affect the error
propagation of the quantized exchanged matrix adversely. Thus we need to consider more reg-
ularization for the problem at hand to have a well-conditioned exchanged matrix and less error
propagation due to a finite precision implementation.

It is worth mentioning that in Fig. 3.2, the divergence behavior at the last CSP for the two large
regularization parameters is mainly due to the down-dating operation. In other words, with a
large regularization parameter, the inverse of the regularized Gram matrix does not get updated
through the sequence of CSPs, and in the last CSP, it is a scaled identity matrix (almost) the same
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Figure 3.3: Average squared error in CSPs, L = 25, N = 4, K = 5, W = 16.

as the initial matrix in the first CSP, and then the matrix inversion in the down-dating operation
will be the inversion of an almost zero matrix.

In Fig 3.5, the divergence behavior of the SRLS algorithm under the assumption of δ = 10−10 and
δ = 10−11 and K = 5 and K = 25 is depicted via a histogram plot. The plot shows the probability
of divergence in each CSP in case divergence happens, measured over different realizations
of the UEs’ locations. The main message of the plot is that, by increasing the number of UEs,
the mass concentration of the histogram will be shifted toward the first CSP. This observation
validates the claim that by increasing the number of UEs, SRLS divergence happens earlier
compared to the case with a smaller number of UEs.

In summary, to implement SRLS with low precision, initialization gets a delicate matter, and it gets
more crucial when the number of UEs increases. These considerations make the use of SRLS
quite impractical, as the number of CSPs to consider should vary as a function of the number of
active UEs. The QR-RLS algorithm is not sensitive to the choice of regularization parameter and
has a numerically stable behavior through the chain of the CSPs and, as a consequence, lower
error on the UEs’ signals estimate.
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Figure 3.4: Average squared error in CSPs, L = 25, N = 4, K = 15, W = 16.

0

0.2

0.4

SRLS Divergence in case of δ = 10−11

K=5
K=25

5 10 15 20 25

0

0.1

0.2

0.3

CSP index

P
ro
b
ab

il
it
y
of

S
R
L
S
d
iv
er
ge
n
ce

SRLS Divergence in case of δ = 10−10

Figure 3.5: Probability mass function of SRLS divergence in each CSP, L = 25, N = 4, W = 16.

REINDEER D2.2 Page 39 of 52



D2.2 - Evaluation of the distribution of processing across infrastructure and associated
requirements on back-haul and synchronization

Chapter 4

RadioWeaves (RW) topology and
government

When designing a RadioWeaves (RW) infrastructure, there are many different aspects to take
into account. In this chapter we discuss how the overall architecture/topology influences the per-
formance, cost, and flexibility, related to distributed processing across the infrastructure. We start
by discussing considerations on a high level, followed by a quantitative analysis of requirements
on front-haul capacity between, and memory requirements in contact service points (CSPs). Fi-
nally, we discuss the processing required to compute and optimize the allocation of distributed
resources for federations to support different services.

4.1 Infrastructure architecture/topology considerations

Distributed processing is affected in several ways by the architecture of a RW, since it puts lim-
itations on the possible routes in the back-haul for message passing between distributed pro-
cessing units. As a general statement, the more connections we have between processing units,
the shorter the routes for message passing and the lower the latency such message passing
incurs on the total processing latency. However, a fully-connected front-haul network is neither
practically, nor economically, feasible. On top of this come considerations regarding, total energy
efficiency, reliability, etc. A good RW infrastructure design therefore has to strike a good balance
between pros and cons – a task that is hugely complex and depends on many parameters, such
as use case requirements. For tractability, we present a simplified high-level view of some of the
main considerations. An initial discussion was presented in REINDEER D2.1, Chapter 5, and is
here expanded with more details.

Before we start the discussion, let us introduce two distance measures that will show up frequently
in the following, loosely defined as:

Front-haul distance (FD): The front-haul distance between any two processing nodes de-
scribes how far from each other the nodes are, either in terms of the number of hops in the
route between them or in terms of the latency introduced by message passing from one to the
other. The further two nodes are in terms of Front-haul distance (FD), the higher the latency in
message passing between them.
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Figure 4.1: Two deployment scenarios with CSPs on a Daisy-chain front-haul. Coverage area of
each CSP indicated in blue.

Wireless distance (WD): The wireless distance between any two nodes describes the proba-
bility that a certain distributed algorithm, in a certain use case, would benefit from co-processing
wireless data/signals from the two nodes. The further two nodes are in Wireless distance (WD),
the less likely that co-processing of data will be beneficial to the overall performance of said
distributed algorithm.

Let us illustrate these two distance measures in Fig. 4.1, where we can see two different deploy-
ment scenarios with CSPs on a Daisy-chain front-haul. In both scenarios the FD depends on
how far two CSPs are on the Daisy chain, while the WD depends on if the indicated coverage
areas of the CSPs overlap or not in the respective scenarios. Wireless data/signals from CSPs
with a larger overlap of their respective coverage areas can benefit from coordinated processing
and therefore have a lower WD than CSPs with less or no overlap of coverage areas.

From a performance point of view, an infrastructure deployment should be done so that CSPs with
a low WD, between which co-processing of wireless data/signals are likely to benefit performance,
should also have a low FD, making message passing more efficient, in terms of less data in
the front-haul, lower incurred latency and better overall energy efficiency. Going back to the
illustration in Fig. 4.1, we can see that in the case of CSPs on both sides of a wall (right), the
Daisy-chained front-haul provides a small FD between all CSPs with small WD. In the case of
CSPs deployed on both sides of a corridor (left), the situation is different. CSPs facing each
other on opposite sides of the corridor have a small WD, while the corresponding FD is large.
To remedy this situation we can, e.g., introduce additional front-haul links across the corridor, as
shown in Fig. 4.2, to lower FD between CSPs with low WD on opposite sides. This will reduce the
data rate in front-haul links and provide additional opportunities for co-processing data/signals
without excessive latency in the front-haul, leading to, e.g., improved wireless data rates and/or
higher precision positioning. However, as mentioned above, there will be restrictions on, e.g.,
deployment cost, putting practical limits in a real environment both on the number of links in the
front-haul and where such links can be deployed.

While more formal definitions of FD and WD, as well as their practical use in optimizing RW de-
ployment in any given scenario, are formidable tasks beyond the scope of this deliverable, the
loose definitions given above provide valuable insight into some of the main considerations when
designing a RW infrastructure. Taking the first steps in the direction of infrastructure design guide-
lines, we continue with more focused and detailed analysis of distributed processing requirements
and elaborate on dynamic allocation of processing resources in an existing deployment.
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Figure 4.2: Introducing additional front-haul links (compared to Fig. 4.1) across the corridor to
lower FD between CSPs with low WD on opposite sides.

4.2 Distributed processing and federations

In this section we mainly discuss the required memory capacity for storing channel matrices and
buffering radio frames as well as the required bandwidth for data exchange between processing
clusters. The specific requirements will depend on many different aspects, including the pro-
cessing algorithms selected (e.g., detection and precoding algorithms), the topology of the RW
infrastructure, the mapping of the algorithms to the hardware architecture, the number of users
being served, the structure and format of the radio frames, etc.

As a starting point, we will select a group of distributed processing algorithms for uplink detection
and the corresponding topology that have been discussed in REINDEER Deliverable 2.1 and
Deliverable 2.2. Then we will abstract the general expression of the required memory capacity
and data exchange bandwidth for the selected algorithms and topologies. We will start with
more straightforward topologies, e.g., Daisy-chain and tree, which will serve as the basis to the
discussion in the end of this section on how the FD and WD would affect the memory capacity
and data exchange bandwidth requirements. There are more classes of algorithms that are
being developed in REINDEER (e.g., real-time federation resource scheduling) whose memory
and data exchange bandwidth requirement will be addressed when they are at a more mature
development stage.

4.2.1 Selected algorithms and topology

For completeness, here we briefly summarize the distributed algorithms and topologies that have
been selected for analysis. The traditional centralized solution is also included here as the base-
line for the analysis.

4.2.1.1 Zero forcing (ZF) detection in a centralized architecture (star topology)

In the traditional centralized architecture, CSPs send the channel estimates (Hi) and the received
signals (yi) to a central processing unit (CPU), e.g., edge computing service point (ECSP) in the
RW infrastructure, [27] where ZF detection is performed as

x̂ = (HHH)−1HHy. (4.1)
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Fig. 4.3 shows the high-level architecture of the centralized solution.

...

...

...

...

...

ECSP

Figure 4.3: Centralized architecture with all the CSPs connecting to a centralized processing unit
(CPU), e.g., ECSPs, in a “star” topology.

4.2.1.2 Recursive least squares (RLS) algorithm mapped to a Daisy-chain topology

The RLS algorithm finds the least squares (LS) solution to the problem minx ∥y−Hx∥2 to perform
zero-forcing multi-user detection in a distributed and serial manner [28]. More specifically, the ith
CSP updates the estimation of the transmitted vector x̂i with the information of local received
signal vector yi, local channel matrix Hi, and the residual matrix Ri−1 from the (i− 1)th CSP:

x̂i = x̂i−1 +Ki(yi −Hix̂i−1), (4.2)

where
Ki = Ri−1H

H
i (σnI+HiRi−1H

H
i )

−1. (4.3)

and updates the residual matrix according to:

Ri = (I−KiHi)Ri−1, (4.4)

The estimated vector and the residual matrix are initialized to x̂0 = 0 and R0 = I. The RLS
algorithm can be mapped to a RW architecture in which CSPs are cascaded in a Daisy-chain as
illustrated in Fig. 4.4

...

...

... ...

...

...

Figure 4.4: RLS algorithm mapped to a Daisy-chain topology.

4.2.1.3 Kalman Filter Combining mapped to a tree topology

The decentralized Kalman filter combing algorithm presented in Section 2.2 shares a similar
concept with the RLS algorithm. These algorithms can be applied to different topologies beyond
Daisy-chain. As depicted in Fig. 2.18 and Fig. 4.5, by aggregating measurements from N CSPs
in parallel, a multi-level N -way tree topology can be formed. One of the benefits of the tree
topology, comparing to the Daisy-chain topology, is a reduced processing latency by processing
several CSPs at the same time.
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...

Figure 4.5: A 2-D CSP array is connected in a multi-level tree topology.

4.2.1.4 System and design parameters for analysis

In Table 4.1, we list the system and design parameters (and the corresponding definitions) that
will be used in the memory and data exchange analysis. More specifically, we assume a RW
infrastructure consisting of Ncsp CSPs and each CSP is equipped with Mcsp antenna elements and
RF chains. The infrastructure is serving Nue signal-antenna users at the same time and frequency
resource. The system operates in a TDD manner with orthogonal frequency-division multiplexing
(OFDM) modulation. We assume the channel matrix is estimated per resource block, which has
in total N f

rbN
t
rb time-frequency resource grids. For simplicity, we assume all the complex-valued

data has the same word-length of wb.

Table 4.1: System and design parameters used for memory and data exchange analysis

Parameter Definition
Mcsp number of antenna elments and RF chains per CSP
Ncsp number of CSPs in the RW
Nsub number of sub-carriers per OFDM symbol
Tofdm time duration of an OFDM symbol
wb bit-width per sampled data (real + imag)
Nue number of users served at the same time and frequency resource
N f

rb number of sub-carriers per resource block
N t

rb number of OFDM symbols per resource block

4.2.2 Required memory size and data exchange bandwidth

4.2.2.1 Data exchange bandwidth analysis

Centralized ZF detection: During the channel estimation phase, all the CSPs send the local
channel estimation (Hi) to the ECSP, resulting an aggregated data exchange bandwidth at the
ECSP being

BWform
zf =

wbNueNcspMcspNsub

TofdmN f
rbN

t
rb

. (4.5)

The ECSPs send the received signal vector yi to the ECSP during the detection phase and the
corresponding aggregated data exchange rate at the ECSP is

BWfil
zf =

wbNcspMcspNsub

Tofdm
. (4.6)
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The RLS algorithm with a Daisy-chain topology: The execution of the RLS algorithm can be
divided into two phases, the formulation phase and the filtering phase. During the formulation
phase, the matrices Ki and Ri are calculated, according to (4.3) and (4.4), once we have the
updated channel matrix Hi, e.g., per resource block. The information needs to be exchanged
between CSPs during the formulation phase is the residual matrix Ri of size Nue ×Nue, with the
corresponding (average) bandwidth requirement per Daisy-chain link being

BWform
rls =

wbN
2
ueNsub

TofdmN f
rbN

t
rb
. (4.7)

During the filtering phase (here consider only uplink detection), the estimated x̂i needs to be
passed serially through CSPs, with the corresponding (average) bandwidth requirement per
Daisy-chain link as following:

BWfil
rls =

wbNueNsub

Tofdm
. (4.8)

The entire RW infrastructure contains (Ncsp − 1) such links.

Kalman filter combining with a tree topology : The amount of information that needs to be ex-
changed between the nodes in a tree topology is the same as that in the Daisy-chain topology,
thereby the per link data exchange bandwidth requirement in the tree topology can also be for-
mulated as (4.7) and (4.8).

4.2.2.2 Memory size requirement analysis

A storage of data is needed in case that there is a time interval between the data generation
and data consumption. The specific requirement on the storage size will depend on many as-
pects including the radio frame structure, the algorithms, the scheduling of the operations, the
processing hardware used, etc. Here we provide a high level analysis of storage requirements,
ignoring implementation details, e.g., required pipeline registers, cache memory and register files
for intermediate results. We also don’t go to the details of different storage hardware, e.g., re-
sisters, on-chip static random-access memory (SRAM), off-chip dynamic random-access memory
(DRAM), yet instead use memory as a general term.

The structure of the used radio frame has a significant impact on the required memory size.
As an illustration, we discuss two types of frame structures shown in Fig. 4.6. For the type (a)
frame structure, uplink pilots are transmitted after the uplink data, meaning that a data buffer is
required to store the first two uplink data OFDM symbols. Depending on the processing latency
(e.g., channel matrix pre-processing can be completed before the uplink data arrives), a data
buffer may not be needed for the type (b) frame structure. The following analysis will be based
on the type (b) frame structure to focus on the required memory due to different algorithms and
topologies selected for the RW infrastructure.

Centralized ZF detection: The ECSP stores the channel matrix H of size McspNcsp ×Nue and the
inversion of the Gram matrix of size Nue ×Nue. Thereby the total required memory size at ECSP
is

MStot
zf =

wb(NueMcspNcsp +N2
ue)Nsub

N f
rb

. (4.9)

The RLS algorithm with Daisy-chain topology: Each CSP needs to store the local channel matrix
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Figure 4.6: Illustration of different frame structures.

Hi of size Mcsp ×Nue and Ki of size Nue ×Mcsp. The required memory size for one CSP is then
given by

MSform
rls =

2wbNueMcspNsub

N f
rb

. (4.10)

One of the drawbacks of the RLS algorithm is the processing latency, i.e., during the filtering
phase, the last CSP in the Daisy-chain needs to wait for the calculation and propagation of x̂i

through the entire chain. Thereby, data buffers are needed to store the received uplink data yi.
The precise estimation of the buffer size will need the knowledge of the processing and data
exchange latency. Here we assume that the latency is a fraction of the OFDM symbol duration
with a factor of Flatency. The required memory size to buffer the received vector yi per CSP is then:

MSfilt
rls = wbMcspNsubFlatency. (4.11)

For simplicity, (4.11) assumes that all the CSPs buffer the same amount of received vectors yi.
In practical implementations, CSPs at the earlier stages of the Daisy-chain can have smaller size
buffers for yi comparing to CSPs at the later stages in the chain.

The total memory size needed for the RW is

MStot
rls = (MSform

rls + MSfilt
rls)Ncsp (4.12)

Kalman filter combining with a tree topology : The required memory size to store the local channel
matrix Hi per CSP is the same as in the Daisy-chain case, i.e.,

MSform
kf =

2wbNueMcspNsub

N f
rb

. (4.13)

On the other hand, the processing latency in a tree topology can be significantly reduced com-
paring to the Daisy-chain topology, F tree

latency < F chain
latency. As a result, the required memory size to

buffer the received vector yi is expected to be much smaller in a tree topology.
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4.2.3 Discussion

4.2.3.1 The impact of WD and FD on memory capacity and data exchange bandwidth

As discussed at the beginning of this section, there is a design trade-off between system per-
formance and deployment cost, given different WD and FD scenarios. Once the CSP cooper-
ation strategy and the corresponding decentralized processing algorithms have been decided,
the data exchange bandwidth requirement is then fixed independent of the FD of the intercon-
nections. However, the cost to support the same data exchange bandwidth for large FD can be
much higher. For instance, according to Table 4.1 of Reindeer Deliverable 3.1, the energy per bit
transfer for larger distance (e.g., 100G Ethernet with router/repeaters) is 100× higher comparing
to that for smaller distance (e.g., 100G Ethernet without router/repeaters). In terms of memory
capacity, large FD will incur much longer latency due to multi-hop data exchange. This implicates
that large size memory would be needed to buffer the received data vectors, according to the
analysis in (4.11).

4.2.3.2 Generalize to other topologies and connections

In section 4.2.1, we used the Daisy-chain and tree topologies with uni-directional links between
CSPs as examples to perform the initial analysis of the hardware requirements for distributed pro-
cessing algorithms. Depending on the real-life RW deployment, quality of service requirements,
and service scenarios, more complicated topologies with bi-directional links can be implemented,
as shown in Fig. 4.7. In these cases, more than one message passes per uplink detection may
occur, depending on the deployed algorithms, for further interference cancellation [28]. Here we
can introduce Iave, the average number of message passes (per link per detection) when exe-
cuting decentralized uplink detection algorithms on a selected topology. For instance, the RLS
algorithm can run Irls iterations in the Daisy-chain [28] and Iave = Irls. The corresponding data
exchange bandwidth requirement will then be Iave times of the uni-directional cases shown in
Section 4.2.2.1. The latency of the decentralized processing will also increase accordingly with
increased Iave, resulting higher memory capacity requirement according to (4.11).

One of the follow-up steps in the project is to analyse the hardware cost and compare differ-
ent distributed processing algorithms/architectures with numerical examples using more realistic
deployment scenarios, use cases, and specific hardware characteristics.

...

...

Chain with bi-directional links

...

...

2-D mesh with bi-directional links

Figure 4.7: CSPs connected with bidirectional links in a Daisy-chain and a 2-D mesh topology,
respectively.
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4.3 Allocation of resources for dynamic management of fed-
erations

The concept of federations has been introduced in REINDEER Deliverable 2.1 [29] as means to
serve diverse applications and many user equipments (UEs) in a RW environment. Represen-
tative cases illustrating the need and value of a federations-based approach were worked out
in [30]. REINDEER Deliverable 3.2 clarified the overall problem of federation orchestration to
include:

• Creation and removal of federations as necessary

• Association of UEs and applications to federations

• Allocation of resources to federations

• Dynamic update of resource allocations and association of UEs to federations

The above tasks clearly fall in the category collective, and are of a different nature than the typ-
ical data processing: they both need to operate on a more RW central level, and temporally
require relatively sporadic updates only. However, as elaborated in the above-mentioned REIN-
DEER D3.2, the allocations to be performed relate to the Santa Claus problem [31], which was
shown to be NP-hard.

1. The input to the federation orchestration should comprise information on the resources in
and the topology of the RWs. This includes the position and capabilities of CSPs and the
interconnect between them. Moreover, information is needed on the UEs that want to get
connected and their requirements. Hence, this information will need to be gathered and
updated on a regular basis. Regular basis in this context definitely is not at the level of
real-time data processing. It should also be noted that this does not require a lot of data
volume, nor bandwidth. It will hence not result in any significant load on the front-haul.

2. The problem solving for the allocation problems is quite, potentially very, demanding in
terms of computations. It is therefore envisioned that this orchestration will require an
ECSP to be executed on.

3. The outcome of the allocation problem again will need to be communicated in the RW,
to all CSPs involved in the orchestration. This will require sporadic updates to perform
dynamic re-allocations. The communication regarding the (novel) allocation itself will also
require a relatively low bandwidth. If a broadcasting/multicasting mode is available in the
RW, this could be an appropriate way of sharing this information. It should also be noticed
that this is not a time-critical process, yet changes in resource allocation should happen at
the CSPs in an orchestrated mode.
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Chapter 5

Summary and Conclusions

This deliverable reports on the studies and assessments regarding architectural requirements,
bottlenecks, and algorithm-architecture co-design opportunities in distributed infrastructures.
In Chapter 2, we undertook a comprehensive study on the advantages and disadvantages of
different architectures to provide the clock sources in a RadioWeaves (RW) network. We also
provided several methods to overcome the shortcomings of the shared clock architectures using
PPS signals or network synchronization signals. For the architecture with individual clock sources
in each contact service point (CSP), we discussed Ethernet connectivity and over the air methods
as two alternative schemes to synchronize the CSPs. We then evaluated the different combining
methods for receive signal processing in the uplink of a distributed multiple-input multiple-output
(MIMO) architecture. We developed a scalable decentralized method by only using a subset of
CSPs for each user equipment (UE) in order to achieve the performance of a fully centralized ar-
chitecture. We also provided a Kalman filtering combining method for the uplink signal processing
and did a detailed numerical study for all the methods.

In Chapter 3, we conducted a detailed numerical study on the uplink performance of standard
recursive least squares (SRLS) algorithm in a daisy-chain topology RW architecture with finite
capacity back-haul communication between CSPs. We concluded that the QR decomposition
based recursive least squares (QR-RLS) algorithm is not sensitive to the choice of regularization
parameter and hence better estimation performance than the SRLS method.

In Chapter 4, we provided several front-haul link architectures which can be deployed in a RW net-
work, to co-process the wireless signals, each coming with its own cost and benefits/challenges.
We then discussed the memory and bandwidth requirements as a function of various system
parameters to transfer the data between different processing clusters for several network topolo-
gies and distributed processing algorithms. We also briefly commented on the memory and data
exchange requirements for general network topologies. We also elucidated the different kinds of
data to be exchanged between CSPs for federation orchestration, UE association, and resource
allocation and updation.
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